popen_helper.py 1.87 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

15
16
"""Helper file for running the async data generation process in OSS."""

17
18
import contextlib
import multiprocessing
19
import multiprocessing.pool
20
21


22
23
24
def get_forkpool(num_workers, init_worker=None, closing=True):
  pool = multiprocessing.Pool(processes=num_workers, initializer=init_worker)
  return contextlib.closing(pool) if closing else pool
25
26


27
28
29
30
def get_threadpool(num_workers, init_worker=None, closing=True):
  pool = multiprocessing.pool.ThreadPool(processes=num_workers,
                                         initializer=init_worker)
  return contextlib.closing(pool) if closing else pool
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


class FauxPool(object):
  """Mimic a pool using for loops.

  This class is used in place of proper pools when true determinism is desired
  for testing or debugging.
  """
  def __init__(self, *args, **kwargs):
    pass

  def map(self, func, iterable, chunksize=None):
    return [func(i) for i in iterable]

  def imap(self, func, iterable, chunksize=1):
    for i in iterable:
      yield func(i)

  def close(self):
    pass

  def terminate(self):
    pass

  def join(self):
    pass

def get_fauxpool(num_workers, init_worker=None, closing=True):
  pool = FauxPool(processes=num_workers, initializer=init_worker)
  return contextlib.closing(pool) if closing else pool
61
62
63
64


def worker_job():
  return "worker"