yt8m_input.py 15.6 KB
Newer Older
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Hye Yoon's avatar
Hye Yoon committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

"""class YT8MFrameFeatureReader(BaseReader).

Hye Yoon's avatar
Hye Yoon committed
17
18
19
20
21
22
23
  Reads TFRecords of SequenceExamples.

  The TFRecords must contain SequenceExamples with the sparse in64 'labels'
  context feature and a fixed length byte-quantized feature vector, obtained
  from the features in 'feature_names'. The quantized features will be mapped
  back into a range between min_quantized_value and max_quantized_value.
  link for details: https://research.google.com/youtube8m/download.html
24
"""
Hye Yoon's avatar
Hye Yoon committed
25
26
27
28

from typing import Dict

import tensorflow as tf
Yeqing Li's avatar
Yeqing Li committed
29
from official.projects.yt8m.dataloaders import utils
Hye Yoon's avatar
Hye Yoon committed
30
from official.vision.beta.configs import video_classification as exp_cfg
31
32
from official.vision.beta.dataloaders import decoder
from official.vision.beta.dataloaders import parser
Hye Yoon's avatar
Hye Yoon committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61


def resize_axis(tensor, axis, new_size, fill_value=0):
  """Truncates or pads a tensor to new_size on on a given axis.

  Truncate or extend tensor such that tensor.shape[axis] == new_size. If the
  size increases, the padding will be performed at the end, using fill_value.

  Args:
    tensor: The tensor to be resized.
    axis: An integer representing the dimension to be sliced.
    new_size: An integer or 0d tensor representing the new value for
      tensor.shape[axis].
    fill_value: Value to use to fill any new entries in the tensor. Will be cast
      to the type of tensor.

  Returns:
    The resized tensor.
  """
  tensor = tf.convert_to_tensor(tensor)
  shape = tf.unstack(tf.shape(tensor))

  pad_shape = shape[:]
  pad_shape[axis] = tf.maximum(0, new_size - shape[axis])

  shape[axis] = tf.minimum(shape[axis], new_size)
  shape = tf.stack(shape)

  resized = tf.concat([
62
63
      tf.slice(tensor, tf.zeros_like(shape), shape),
      tf.fill(tf.stack(pad_shape), tf.cast(fill_value, tensor.dtype))
Hye Yoon's avatar
Hye Yoon committed
64
65
66
67
68
69
70
71
72
  ], axis)

  # Update shape.
  new_shape = tensor.shape.as_list()  # A copy is being made.
  new_shape[axis] = new_size
  resized = tf.ensure_shape(resized, new_shape)
  return resized


73
74
def _process_segment_and_label(video_matrix, num_frames, contexts,
                               segment_labels, segment_size,
Hye Yoon's avatar
Hye Yoon committed
75
76
                               num_classes) -> Dict[str, tf.Tensor]:
  """Processes a batched Tensor of frames.
77

Hye Yoon's avatar
Hye Yoon committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
  The same parameters used in process should be used here.
  Args:
    video_matrix: different features concatenated into one matrix
    num_frames: Number of frames per subclip.
    contexts: context information extracted from decoder
    segment_labels: if we read segment labels instead.
    segment_size: the segment_size used for reading segments.
    num_classes: a positive integer for the number of classes.

  Returns:
    output: dictionary containing batch information
  """
  # Partition frame-level feature matrix to segment-level feature matrix.
  if segment_labels:
    start_times = contexts["segment_start_times"].values
    # Here we assume all the segments that started at the same start time has
    # the same segment_size.
95
    uniq_start_times, seg_idxs = tf.unique(start_times, out_idx=tf.dtypes.int64)
Hye Yoon's avatar
Hye Yoon committed
96
    # Range gather matrix, e.g., [[0,1,2],[1,2,3]] for segment_size == 3.
97
98
99
    range_mtx = tf.expand_dims(
        uniq_start_times, axis=-1) + tf.expand_dims(
            tf.range(0, segment_size, dtype=tf.int64), axis=0)
Hye Yoon's avatar
Hye Yoon committed
100
101
102
103
    # Shape: [num_segment, segment_size, feature_dim].
    batch_video_matrix = tf.gather_nd(video_matrix,
                                      tf.expand_dims(range_mtx, axis=-1))
    num_segment = tf.shape(batch_video_matrix)[0]
104
105
106
107
    batch_video_ids = tf.reshape(
        tf.tile([contexts["id"]], [num_segment]), (num_segment,))
    batch_frames = tf.reshape(
        tf.tile([segment_size], [num_segment]), (num_segment,))
Hye Yoon's avatar
Hye Yoon committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    batch_frames = tf.cast(tf.expand_dims(batch_frames, 1), tf.float32)

    # For segment labels, all labels are not exhaustively rated. So we only
    # evaluate the rated labels.

    # Label indices for each segment, shape: [num_segment, 2].
    label_indices = tf.stack([seg_idxs, contexts["segment_labels"].values],
                             axis=-1)
    label_values = contexts["segment_scores"].values
    sparse_labels = tf.sparse.SparseTensor(label_indices, label_values,
                                           (num_segment, num_classes))
    batch_labels = tf.sparse.to_dense(sparse_labels, validate_indices=False)

    sparse_label_weights = tf.sparse.SparseTensor(
122
123
124
125
        label_indices, tf.ones_like(label_values, dtype=tf.float32),
        (num_segment, num_classes))
    batch_label_weights = tf.sparse.to_dense(
        sparse_label_weights, validate_indices=False)
Hye Yoon's avatar
Hye Yoon committed
126
127
128
129
130
    # output_dict = utils.get_segments(batch_video_matrix, batch_frames, 5)
  else:
    # Process video-level labels.
    label_indices = contexts["labels"].values
    sparse_labels = tf.sparse.SparseTensor(
131
132
133
134
        tf.expand_dims(label_indices, axis=-1),
        tf.ones_like(contexts["labels"].values, dtype=tf.bool), (num_classes,))
    labels = tf.sparse.to_dense(
        sparse_labels, default_value=False, validate_indices=False)
Hye Yoon's avatar
Hye Yoon committed
135
136
137
138
139
140
141
142
143

    # convert to batch format.
    batch_video_ids = tf.expand_dims(contexts["id"], 0)
    batch_video_matrix = tf.expand_dims(video_matrix, 0)
    batch_labels = tf.expand_dims(labels, 0)
    batch_frames = tf.expand_dims(num_frames, 0)
    batch_label_weights = None

  output_dict = {
144
145
146
147
      "video_ids": batch_video_ids,
      "video_matrix": batch_video_matrix,
      "labels": batch_labels,
      "num_frames": batch_frames,
Hye Yoon's avatar
Hye Yoon committed
148
149
150
151
152
153
154
  }
  if batch_label_weights is not None:
    output_dict["label_weights"] = batch_label_weights

  return output_dict


155
156
def _get_video_matrix(features, feature_size, max_frames, max_quantized_value,
                      min_quantized_value):
Hye Yoon's avatar
Hye Yoon committed
157
158
  """Decodes features from an input string and quantizes it.

159
160
161
162
163
164
  Args:
    features: raw feature values
    feature_size: length of each frame feature vector
    max_frames: number of frames (rows) in the output feature_matrix
    max_quantized_value: the maximum of the quantized value.
    min_quantized_value: the minimum of the quantized value.
Hye Yoon's avatar
Hye Yoon committed
165

166
167
168
169
  Returns:
    feature_matrix: matrix of all frame-features
    num_frames: number of frames in the sequence
  """
Hye Yoon's avatar
Hye Yoon committed
170
  decoded_features = tf.reshape(
171
172
      tf.cast(tf.io.decode_raw(features, tf.uint8), tf.float32),
      [-1, feature_size])
Hye Yoon's avatar
Hye Yoon committed
173
174
175
176
177
178
179
180

  num_frames = tf.math.minimum(tf.shape(decoded_features)[0], max_frames)
  feature_matrix = utils.Dequantize(decoded_features, max_quantized_value,
                                    min_quantized_value)
  feature_matrix = resize_axis(feature_matrix, 0, max_frames)
  return feature_matrix, num_frames


181
182
183
def _concat_features(features, feature_names, feature_sizes, max_frames,
                     max_quantized_value, min_quantized_value):
  """Loads (potentially) different types of features and concatenates them.
Hye Yoon's avatar
Hye Yoon committed
184

185
186
187
188
189
190
191
  Args:
      features: raw feature values
      feature_names: list of feature names
      feature_sizes: list of features sizes
      max_frames: number of frames in the sequence
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.
Hye Yoon's avatar
Hye Yoon committed
192

193
194
195
196
  Returns:
      video_matrix: different features concatenated into one matrix
      num_frames: the number of frames in the video
  """
Hye Yoon's avatar
Hye Yoon committed
197
198
199
200
201

  num_features = len(feature_names)
  assert num_features > 0, "No feature selected: feature_names is empty!"

  assert len(feature_names) == len(feature_sizes), (
202
203
      "length of feature_names (={}) != length of feature_sizes (={})".format(
          len(feature_names), len(feature_sizes)))
Hye Yoon's avatar
Hye Yoon committed
204
205
206
207
208

  num_frames = -1  # the number of frames in the video
  feature_matrices = [None] * num_features  # an array of different features
  for feature_index in range(num_features):
    feature_matrix, num_frames_in_this_feature = _get_video_matrix(
209
210
        features[feature_names[feature_index]], feature_sizes[feature_index],
        max_frames, max_quantized_value, min_quantized_value)
Hye Yoon's avatar
Hye Yoon committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
    if num_frames == -1:
      num_frames = num_frames_in_this_feature

    feature_matrices[feature_index] = feature_matrix

  # cap the number of frames at self.max_frames
  num_frames = tf.minimum(num_frames, max_frames)

  # concatenate different features
  video_matrix = tf.concat(feature_matrices, 1)

  return video_matrix, num_frames


class Decoder(decoder.Decoder):
  """A tf.Example decoder for classification task."""

228
229
230
231
  def __init__(
      self,
      input_params: exp_cfg.DataConfig,
  ):
Hye Yoon's avatar
Hye Yoon committed
232
233
234
235

    self._segment_labels = input_params.segment_labels
    self._feature_names = input_params.feature_names
    self._context_features = {
236
        "id": tf.io.FixedLenFeature([], tf.string),
Hye Yoon's avatar
Hye Yoon committed
237
238
239
    }
    if self._segment_labels:
      self._context_features.update({
240
241
242
243
244
          # There is no need to read end-time given we always assume the segment
          # has the same size.
          "segment_labels": tf.io.VarLenFeature(tf.int64),
          "segment_start_times": tf.io.VarLenFeature(tf.int64),
          "segment_scores": tf.io.VarLenFeature(tf.float32)
Hye Yoon's avatar
Hye Yoon committed
245
246
247
248
249
      })
    else:
      self._context_features.update({"labels": tf.io.VarLenFeature(tf.int64)})

    self._sequence_features = {
250
251
        feature_name: tf.io.FixedLenSequenceFeature([], dtype=tf.string)
        for feature_name in self._feature_names
Hye Yoon's avatar
Hye Yoon committed
252
253
254
255
256
257
    }

  def decode(self, serialized_example):
    """Parses a single tf.Example into image and label tensors."""

    contexts, features = tf.io.parse_single_sequence_example(
258
259
260
        serialized_example,
        context_features=self._context_features,
        sequence_features=self._sequence_features)
Hye Yoon's avatar
Hye Yoon committed
261

262
    return {"contexts": contexts, "features": features}
Hye Yoon's avatar
Hye Yoon committed
263
264
265
266


class Parser(parser.Parser):
  """Parses a video and label dataset.
267

Hye Yoon's avatar
Hye Yoon committed
268
269
270
271
272
273
    takes the decoded raw tensors dict
    and parse them into a dictionary of tensors
    that can be consumed by the model.
    It will be executed after decoder.
  """

274
275
276
277
278
279
  def __init__(
      self,
      input_params: exp_cfg.DataConfig,
      max_quantized_value=2,
      min_quantized_value=-2,
  ):
Hye Yoon's avatar
Hye Yoon committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
    self._num_classes = input_params.num_classes
    self._segment_size = input_params.segment_size
    self._segment_labels = input_params.segment_labels
    self._feature_names = input_params.feature_names
    self._feature_sizes = input_params.feature_sizes
    self.stride = input_params.temporal_stride
    self._max_frames = input_params.max_frames
    self._num_frames = input_params.num_frames
    self._seed = input_params.random_seed
    self._max_quantized_value = max_quantized_value
    self._min_quantized_value = min_quantized_value

  def _parse_train_data(self, decoded_tensors):
    """Parses data for training."""
    # loads (potentially) different types of features and concatenates them
    self.video_matrix, self.num_frames = _concat_features(
296
297
298
299
300
301
302
        decoded_tensors["features"], self._feature_names, self._feature_sizes,
        self._max_frames, self._max_quantized_value, self._min_quantized_value)
    output_dict = _process_segment_and_label(self.video_matrix, self.num_frames,
                                             decoded_tensors["contexts"],
                                             self._segment_labels,
                                             self._segment_size,
                                             self._num_classes)
Hye Yoon's avatar
Hye Yoon committed
303
304
305
306
307
308
    return output_dict

  def _parse_eval_data(self, decoded_tensors):
    """Parses data for evaluation."""
    # loads (potentially) different types of features and concatenates them
    self.video_matrix, self.num_frames = _concat_features(
309
310
311
312
313
314
315
        decoded_tensors["features"], self._feature_names, self._feature_sizes,
        self._max_frames, self._max_quantized_value, self._min_quantized_value)
    output_dict = _process_segment_and_label(self.video_matrix, self.num_frames,
                                             decoded_tensors["contexts"],
                                             self._segment_labels,
                                             self._segment_size,
                                             self._num_classes)
Hye Yoon's avatar
Hye Yoon committed
316
317
318
319
320
321
322
323
324
325
326
327
328
    return output_dict  # batched

  def parse_fn(self, is_training):
    """Returns a parse fn that reads and parses raw tensors from the decoder.

    Args:
      is_training: a `bool` to indicate whether it is in training mode.

    Returns:
      parse: a `callable` that takes the serialized example and generate the
        images, labels tuple where labels is a dict of Tensors that contains
        labels.
    """
329

Hye Yoon's avatar
Hye Yoon committed
330
331
332
333
334
335
336
337
338
    def parse(decoded_tensors):
      """Parses the serialized example data."""
      if is_training:
        return self._parse_train_data(decoded_tensors)
      else:
        return self._parse_eval_data(decoded_tensors)

    return parse

339

Hye Yoon's avatar
Hye Yoon committed
340
class PostBatchProcessor():
341
342
  """Processes a video and label dataset which is batched."""

Hye Yoon's avatar
Hye Yoon committed
343
344
345
346
347
348
349
  def __init__(self, input_params: exp_cfg.DataConfig):
    self.segment_labels = input_params.segment_labels
    self.num_classes = input_params.num_classes
    self.segment_size = input_params.segment_size

  def post_fn(self, batched_tensors):
    """Processes batched Tensors."""
350
351
352
353
    video_ids = batched_tensors["video_ids"]
    video_matrix = batched_tensors["video_matrix"]
    labels = batched_tensors["labels"]
    num_frames = batched_tensors["num_frames"]
Hye Yoon's avatar
Hye Yoon committed
354
355
356
357
358
359
360
361
362
363
    label_weights = None

    if self.segment_labels:
      # [batch x num_segment x segment_size x num_features]
      # -> [batch * num_segment x segment_size x num_features]
      video_ids = tf.reshape(video_ids, [-1])
      video_matrix = tf.reshape(video_matrix, [-1, self.segment_size, 1152])
      labels = tf.reshape(labels, [-1, self.num_classes])
      num_frames = tf.reshape(num_frames, [-1, 1])

364
365
      label_weights = tf.reshape(batched_tensors["label_weights"],
                                 [-1, self.num_classes])
Hye Yoon's avatar
Hye Yoon committed
366
367
368
369
370
371

    else:
      video_matrix = tf.squeeze(video_matrix)
      labels = tf.squeeze(labels)

    batched_tensors = {
372
373
374
375
        "video_ids": video_ids,
        "video_matrix": video_matrix,
        "labels": labels,
        "num_frames": num_frames,
Hye Yoon's avatar
Hye Yoon committed
376
377
378
379
380
381
382
    }

    if label_weights is not None:
      batched_tensors["label_weights"] = label_weights

    return batched_tensors

383

Hye Yoon's avatar
Hye Yoon committed
384
class TransformBatcher():
385
386
387
  """Performs manual batching on input dataset."""

  def __init__(self, input_params: exp_cfg.DataConfig):
Hye Yoon's avatar
Hye Yoon committed
388
389
390
391
392
    self._segment_labels = input_params.segment_labels
    self._global_batch_size = input_params.global_batch_size
    self._is_training = input_params.is_training

  def batch_fn(self, dataset, input_context):
393
    """Add padding when segment_labels is true."""
Hye Yoon's avatar
Hye Yoon committed
394
395
396
    per_replica_batch_size = input_context.get_per_replica_batch_size(
        self._global_batch_size) if input_context else self._global_batch_size
    if not self._segment_labels:
397
      dataset = dataset.batch(per_replica_batch_size, drop_remainder=True)
Hye Yoon's avatar
Hye Yoon committed
398
399
    else:
      # add padding
400
401
402
403
404
405
406
407
408
409
410
411
412
413
      pad_shapes = {
          "video_ids": [None],
          "video_matrix": [None, None, None],
          "labels": [None, None],
          "num_frames": [None, None],
          "label_weights": [None, None]
      }
      pad_values = {
          "video_ids": None,
          "video_matrix": 0.0,
          "labels": -1.0,
          "num_frames": 0.0,
          "label_weights": 0.0
      }
Hye Yoon's avatar
Hye Yoon committed
414
      dataset = dataset.padded_batch(
415
416
417
418
          per_replica_batch_size,
          padded_shapes=pad_shapes,
          drop_remainder=True,
          padding_values=pad_values)
Hye Yoon's avatar
Hye Yoon committed
419
    return dataset