utils.py 3.21 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

15
"""Utility helpers for Bert2Bert."""
Frederick Liu's avatar
Frederick Liu committed
16
17
from typing import Optional, Text

18
19
from absl import logging
import tensorflow as tf
Frederick Liu's avatar
Frederick Liu committed
20

21
22
from official.modeling.hyperparams import params_dict
from official.nlp.bert import configs
23
from official.projects.nhnet import configs as nhnet_configs
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43


def get_bert_config_from_params(
    params: params_dict.ParamsDict) -> configs.BertConfig:
  """Converts a BertConfig to ParamsDict."""
  return configs.BertConfig.from_dict(params.as_dict())


def get_test_params(cls=nhnet_configs.BERT2BERTConfig):
  return cls.from_args(**nhnet_configs.UNITTEST_CONFIG)


# pylint: disable=protected-access
def encoder_common_layers(transformer_block):
  return [
      transformer_block._attention_layer,
      transformer_block._attention_layer_norm,
      transformer_block._intermediate_dense, transformer_block._output_dense,
      transformer_block._output_layer_norm
  ]
Hongkun Yu's avatar
Hongkun Yu committed
44
45


46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# pylint: enable=protected-access


def initialize_bert2bert_from_pretrained_bert(
    bert_encoder: tf.keras.layers.Layer,
    bert_decoder: tf.keras.layers.Layer,
    init_checkpoint: Optional[Text] = None) -> None:
  """Helper function to initialze Bert2Bert from Bert pretrained checkpoint."""
  ckpt = tf.train.Checkpoint(model=bert_encoder)
  logging.info(
      "Checkpoint file %s found and restoring from "
      "initial checkpoint for core model.", init_checkpoint)
  status = ckpt.restore(init_checkpoint)

  # Expects the bert model is a subset of checkpoint as pooling layer is
  # not used.
  status.assert_existing_objects_matched()
  logging.info("Loading from checkpoint file completed.")

  # Saves a checkpoint with transformer layers.
  encoder_layers = []
  for transformer_block in bert_encoder.transformer_layers:
    encoder_layers.extend(encoder_common_layers(transformer_block))

  # Restores from the checkpoint with encoder layers.
  decoder_layers_to_initialize = []
  for decoder_block in bert_decoder.decoder.layers:
    decoder_layers_to_initialize.extend(
        decoder_block.common_layers_with_encoder())

  if len(decoder_layers_to_initialize) != len(encoder_layers):
    raise ValueError(
        "Source encoder layers with %d objects does not match destination "
        "decoder layers with %d objects." %
        (len(decoder_layers_to_initialize), len(encoder_layers)))

  for dest_layer, source_layer in zip(decoder_layers_to_initialize,
                                      encoder_layers):
    try:
      dest_layer.set_weights(source_layer.get_weights())
    except ValueError as e:
      logging.error(
          "dest_layer: %s failed to set weights from "
          "source_layer: %s as %s", dest_layer.name, source_layer.name, str(e))