configs.py 3.13 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

15
16
17
"""Common NHNet/Bert2Bert configuration."""

import dataclasses
18
from typing import List, Text
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

from official.modeling.hyperparams import base_config


@dataclasses.dataclass
class BERT2BERTConfig(base_config.Config):
  """High-level configurations for BERT2BERT model.

  These include parameters that are not directly related to the experiment,
  e.g. encoder, decoder, prediction, training, etc.
  """
  vocab_size: int = 30522
  hidden_size: int = 768
  num_hidden_layers: int = 12
  num_attention_heads: int = 12
  intermediate_size: int = 3072
  hidden_act: str = "gelu"
  hidden_dropout_prob: float = 0.1
  attention_probs_dropout_prob: float = 0.1
  max_position_embeddings: int = 512
  type_vocab_size: int = 2
  initializer_range: float = 0.02
  decoder_intermediate_size: int = 3072
  num_decoder_attn_heads: int = 12
  num_decoder_layers: int = 12

  label_smoothing: float = 0.1
  learning_rate: float = 0.05
  learning_rate_warmup_steps: int = 20000
  optimizer: str = "Adam"
  adam_beta1: float = 0.9
  adam_beta2: float = 0.997
  adam_epsilon: float = 1e-09

  # predict params
  beam_size: int = 5
  alpha: float = 0.6
  initializer_gain: float = 1.0
  use_cache: bool = True

  # input params
  input_sharding: bool = False
  input_data_not_padded: bool = False
  pad_token_id: int = 0
  end_token_id: int = 102
  start_token_id: int = 101


@dataclasses.dataclass
class NHNetConfig(BERT2BERTConfig):
  """High-level configurations for NHNet model.

  These include parameters that are not directly related to the experiment,
  e.g. encoder, decoder, prediction, training, etc.
  """
  multi_channel_cross_attention: bool = True
  passage_list: List[Text] = dataclasses.field(
      default_factory=lambda: [chr(ord("b") + i) for i in range(5)])

  # Initialization method.
  # If init_from_bert2bert is false, we assume the checkpoint is from BERT
  # pretraining and only encoder and self-attention variables are initialized.
  init_from_bert2bert: bool = True


UNITTEST_CONFIG = {
    "attention_probs_dropout_prob": 0.0,
    "hidden_act": "gelu",
    "hidden_dropout_prob": 0.0,
    "hidden_size": 16,
    "initializer_range": 0.02,
    "intermediate_size": 32,
    "max_position_embeddings": 128,
    "num_attention_heads": 2,
    "num_hidden_layers": 1,
    "type_vocab_size": 2,
    "vocab_size": 30522,
    "initializer_gain": 1.0,
    "decoder_intermediate_size": 32,
    "num_decoder_attn_heads": 2,
    "num_decoder_layers": 1,
    "use_cache": True,
    "input_data_not_padded": False,
    "pad_token_id": 0,
    "end_token_id": 102,
    "start_token_id": 101,
}