train.py 4.9 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
SunJong Park's avatar
SunJong Park committed
16
17
18
19
20
21
22
23
24
25
r"""Training driver.

Commandline:
python -m official.vision.beta.projects.assemblenet.trian \
  --mode=train_and_eval --experiment=assemblenetplus_ucf101 \
  --model_dir='YOUR MODEL SAVE GS BUCKET' \
  --config_file=./official/vision/beta/projects/assemblenet/ \
  --ucf101_assemblenet_plus_tpu.yaml \
  --tpu=TPU_NAME
"""
Yeqing Li's avatar
Yeqing Li committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

from absl import app
from absl import flags
from absl import logging
import gin

# pylint: disable=unused-import
from official.common import registry_imports
# pylint: enable=unused-import
from official.common import distribute_utils
from official.common import flags as tfm_flags
from official.core import task_factory
from official.core import train_lib
from official.core import train_utils
from official.modeling import performance
# pylint: disable=unused-import
Yeqing Li's avatar
Yeqing Li committed
42
43
44
from official.projects.assemblenet.configs import assemblenet as asn_configs
from official.projects.assemblenet.modeling import assemblenet as asn
from official.projects.assemblenet.modeling import assemblenet_plus as asnp
Yeqing Li's avatar
Yeqing Li committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# pylint: enable=unused-import

FLAGS = flags.FLAGS


def main(_):
  gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_params)
  params = train_utils.parse_configuration(FLAGS)
  model_dir = FLAGS.model_dir
  if 'train' in FLAGS.mode:
    # Pure eval modes do not output yaml files. Otherwise continuous eval job
    # may race against the train job for writing the same file.
    train_utils.serialize_config(params, model_dir)

  if 'train_and_eval' in FLAGS.mode:
    assert (params.task.train_data.feature_shape ==
            params.task.validation_data.feature_shape), (
                f'train {params.task.train_data.feature_shape} != validate '
                f'{params.task.validation_data.feature_shape}')

  if 'assemblenet' in FLAGS.experiment:
SunJong Park's avatar
SunJong Park committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    if 'plus' in FLAGS.experiment:
      if 'eval' in FLAGS.mode:
        # Use the feature shape in validation_data for all jobs. The number of
        # frames in train_data will be used to construct the Assemblenet++
        # model.
        params.task.model.backbone.assemblenet_plus.num_frames = (
            params.task.validation_data.feature_shape[0])
        shape = params.task.validation_data.feature_shape
      else:
        params.task.model.backbone.assemblenet_plus.num_frames = (
            params.task.train_data.feature_shape[0])
        shape = params.task.train_data.feature_shape
      logging.info('mode %r num_frames %r feature shape %r', FLAGS.mode,
                   params.task.model.backbone.assemblenet_plus.num_frames,
                   shape)

Yeqing Li's avatar
Yeqing Li committed
82
    else:
SunJong Park's avatar
SunJong Park committed
83
84
85
86
87
88
89
90
91
92
93
94
      if 'eval' in FLAGS.mode:
        # Use the feature shape in validation_data for all jobs. The number of
        # frames in train_data will be used to construct the Assemblenet model.
        params.task.model.backbone.assemblenet.num_frames = (
            params.task.validation_data.feature_shape[0])
        shape = params.task.validation_data.feature_shape
      else:
        params.task.model.backbone.assemblenet.num_frames = (
            params.task.train_data.feature_shape[0])
        shape = params.task.train_data.feature_shape
      logging.info('mode %r num_frames %r feature shape %r', FLAGS.mode,
                   params.task.model.backbone.assemblenet.num_frames, shape)
Yeqing Li's avatar
Yeqing Li committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

  # Sets mixed_precision policy. Using 'mixed_float16' or 'mixed_bfloat16'
  # can have significant impact on model speeds by utilizing float16 in case of
  # GPUs, and bfloat16 in the case of TPUs. loss_scale takes effect only when
  # dtype is float16
  if params.runtime.mixed_precision_dtype:
    performance.set_mixed_precision_policy(params.runtime.mixed_precision_dtype)
  distribution_strategy = distribute_utils.get_distribution_strategy(
      distribution_strategy=params.runtime.distribution_strategy,
      all_reduce_alg=params.runtime.all_reduce_alg,
      num_gpus=params.runtime.num_gpus,
      tpu_address=params.runtime.tpu)
  with distribution_strategy.scope():
    task = task_factory.get_task(params.task, logging_dir=model_dir)

  train_lib.run_experiment(
      distribution_strategy=distribution_strategy,
      task=task,
      mode=FLAGS.mode,
      params=params,
      model_dir=model_dir)

  train_utils.save_gin_config(FLAGS.mode, model_dir)

if __name__ == '__main__':
  tfm_flags.define_flags()
SunJong Park's avatar
SunJong Park committed
121
  flags.mark_flags_as_required(['experiment', 'mode', 'model_dir'])
Yeqing Li's avatar
Yeqing Li committed
122
  app.run(main)