utils.py 2.51 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Chen Chen's avatar
Chen Chen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

Chen Chen's avatar
Chen Chen committed
15
"""Common utils for tasks."""
16
17
18
from typing import Any, Callable

import orbit
Chen Chen's avatar
Chen Chen committed
19
20
21
22
import tensorflow as tf
import tensorflow_hub as hub


Chen Chen's avatar
Chen Chen committed
23
def get_encoder_from_hub(hub_model_path: str) -> tf.keras.Model:
Chen Chen's avatar
Chen Chen committed
24
25
26
  """Gets an encoder from hub.

  Args:
Chen Chen's avatar
Chen Chen committed
27
    hub_model_path: The path to the tfhub model.
Chen Chen's avatar
Chen Chen committed
28
29
30
31

  Returns:
    A tf.keras.Model.
  """
Chen Chen's avatar
Chen Chen committed
32
33
34
35
36
37
  input_word_ids = tf.keras.layers.Input(
      shape=(None,), dtype=tf.int32, name='input_word_ids')
  input_mask = tf.keras.layers.Input(
      shape=(None,), dtype=tf.int32, name='input_mask')
  input_type_ids = tf.keras.layers.Input(
      shape=(None,), dtype=tf.int32, name='input_type_ids')
Chen Chen's avatar
Chen Chen committed
38
  hub_layer = hub.KerasLayer(hub_model_path, trainable=True)
Chen Chen's avatar
Chen Chen committed
39
40
41
42
43
  output_dict = {}
  dict_input = dict(
      input_word_ids=input_word_ids,
      input_mask=input_mask,
      input_type_ids=input_type_ids)
44
  output_dict = hub_layer(dict_input)
Chen Chen's avatar
Chen Chen committed
45
46

  return tf.keras.Model(inputs=dict_input, outputs=output_dict)
47
48
49


def predict(predict_step_fn: Callable[[Any], Any],
Hongkun Yu's avatar
Hongkun Yu committed
50
            aggregate_fn: Callable[[Any, Any], Any], dataset: tf.data.Dataset):
51
52
53
54
55
56
  """Runs prediction.

  Args:
    predict_step_fn: A callable such as `def predict_step(inputs)`, where
      `inputs` are input tensors.
    aggregate_fn: A callable such as `def aggregate_fn(state, value)`, where
Hongkun Yu's avatar
Hongkun Yu committed
57
      `value` is the outputs from `predict_step_fn`.
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    dataset: A `tf.data.Dataset` object.

  Returns:
    The aggregated predictions.
  """

  @tf.function
  def predict_step(iterator):
    """Predicts on distributed devices."""
    outputs = tf.distribute.get_strategy().run(
        predict_step_fn, args=(next(iterator),))
    return tf.nest.map_structure(
        tf.distribute.get_strategy().experimental_local_results, outputs)

  loop_fn = orbit.utils.create_loop_fn(predict_step)
  # Set `num_steps` to -1 to exhaust the dataset.
  outputs = loop_fn(
      iter(dataset), num_steps=-1, state=None, reduce_fn=aggregate_fn)  # pytype: disable=wrong-arg-types
  return outputs