inputs.py 21.2 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Philip Pham's avatar
Philip Pham committed
2
3
4
5
6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
Frederick Liu's avatar
Frederick Liu committed
7
#     http://www.apache.org/licenses/LICENSE-2.0
Philip Pham's avatar
Philip Pham committed
8
9
10
11
12
13
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

Philip Pham's avatar
Philip Pham committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
"""Input processing for TriviaQA."""
import os
from typing import Optional, Text, Union

import tensorflow as tf
import tensorflow_datasets as tfds

from official.modeling import tf_utils
from official.nlp.projects.triviaqa import dataset  # pylint: disable=unused-import


def _flatten_dims(tensor: tf.Tensor,
                  first_dim: Optional[int] = 0,
                  last_dim: Optional[int] = -1,
                  name: Optional[Text] = None) -> tf.Tensor:
  """Flattens the given span of dimensions in `tensor`.

  Args:
    tensor: [..., first_dim_size, ...middle_dims..., last_dim_size, ...] shaped
      Tensor.
    first_dim: The first dimension to flatten (inclusive). Must be a valid index
      for the rank of `tensor`. Default is 0.
    last_dim: The last dimension to flatten (inclusive). Must be a valid index
      for the rank of `tensor`. Default is -1.
    name: A name for the operation (optional).

  Returns:
    Tensor of shape [..., flattened_dim_size, ...] where
    flattened_dim_size = first_dim_size * ...middle_dims... * last_dim_size.
  """
  with tf.name_scope(name or 'flatten_dims'):
    tensor = tf.convert_to_tensor(tensor)

    rank = tensor.shape.rank
    if rank is None:
      raise ValueError('Static rank of `tensor` must be known.')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
51
    if first_dim < 0:  # pytype: disable=unsupported-operands
Philip Pham's avatar
Philip Pham committed
52
      first_dim += rank
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
53
    if first_dim < 0 or first_dim >= rank:  # pytype: disable=unsupported-operands
Philip Pham's avatar
Philip Pham committed
54
      raise ValueError('`first_dim` out of bounds for `tensor` rank.')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
55
    if last_dim < 0:  # pytype: disable=unsupported-operands
Philip Pham's avatar
Philip Pham committed
56
      last_dim += rank
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
57
    if last_dim < 0 or last_dim >= rank:  # pytype: disable=unsupported-operands
Philip Pham's avatar
Philip Pham committed
58
      raise ValueError('`last_dim` out of bounds for `tensor` rank.')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
59
    if first_dim > last_dim:  # pytype: disable=unsupported-operands
Philip Pham's avatar
Philip Pham committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
      raise ValueError('`first_dim` must not be larger than `last_dim`.')

    # Try to calculate static flattened dim size if all input sizes to flatten
    # are statically known. Otherwise, just use -1.
    flat_dims_shape = tensor.shape[first_dim:(last_dim + 1)].as_list()
    flattened_dim_size = 1
    for size in flat_dims_shape:
      if size is None:
        flattened_dim_size = -1
        break
      flattened_dim_size *= size

    old_shape = tf.shape(tensor)
    output_shape = tf.concat([
        old_shape[:first_dim], [flattened_dim_size], old_shape[(last_dim + 1):]
    ], 0)
    return tf.reshape(tensor, output_shape)


def _pad_to_multiple(tensor: tf.Tensor,
                     factor: Union[int, tf.Tensor],
                     axis: int,
                     mode: Optional[Text] = 'CONSTANT',
                     constant_values=0,
                     name: Optional[Text] = None) -> tf.Tensor:
  """Pads `tensor` on a given `axis` to be a multiple of `factor`.

  Padding will be concatenated to the end of the axis only, not the beginning.
  If the length along `axis` is already a multiple of `factor`, this is
  effectively a no-op.

  Args:
    tensor: A Tensor with rank >= 1 to pad.
    factor: Positive integer factor to pad for. If a Tensor, must be a scalar
      int.
    axis: A valid axis in `tensor` to pad.
    mode: The padding mode to use according to `tf.pad`. Defaults to 'CONSTANT'.
    constant_values: For 'CONSTANT' mode, the scalar pad value to use within
      `tf.pad`. Defaults to 0. Must be same type as `tensor`.
    name: A name for the operation (optional).

  Returns:
    The padded Tensor result.
  """
  with tf.name_scope(name or 'pad_to_multiple'):
    tensor = tf.convert_to_tensor(tensor)

    if isinstance(factor, int) and factor < 1:
      raise ValueError('`factor` must be positive.')
    rank = tensor.shape.rank
    if rank is None:
      raise ValueError('Static rank of `tensor` must be known.')
    if axis < 0:
      axis += rank
    if axis < 0 or axis >= rank:
      raise ValueError('`axis` out of bounds for `tensor` rank.')

    axis_len = tf_utils.get_shape_list(tensor)[axis]
    pad_len = -axis_len % factor
    paddings = pad_len * tf.one_hot([-1, axis], rank, axis=0, dtype=tf.int32)
    return tf.pad(
        tensor=tensor,
        paddings=paddings,
        mode=mode,
        constant_values=constant_values)


def _skew_elements_right(tensor: tf.Tensor,
                         axis: int,
                         pad_value=0,
                         name: Optional[Text] = None) -> tf.Tensor:
  """Skews successive elements right along the given `axis`.

  This changes an input like
  [
    [1, 2, 3],
    [4, 5, 6],
    [7, 8, 9]
  ]
  into the following:
  [
    [1, 2, 3, 0, 0],
    [0, 4, 5, 6, 0],
    [0, 0, 7, 8, 9]
  ]

  Args:
    tensor: Tensor of shape [..., num_rows, axis_len, ...].
    axis: A valid axis in `tensor` to skew along. It must not be the first axis
      in `tensor`.
    pad_value: The scalar pad value to use. Defaults to 0. Must be the same type
      as `tensor`.
    name: A name for the operation (optional).

  Returns:
    Tensor of shape [..., num_rows, axis_len + num_rows - 1, ...].
  """
  with tf.name_scope(name or 'skew_elements_right'):
    tensor = tf.convert_to_tensor(tensor)

    rank = tensor.shape.rank
    num_rows = tf_utils.get_shape_list(tensor)[axis - 1]
    axis_len = tf_utils.get_shape_list(tensor)[axis]

    if rank is None:
      raise ValueError('Static rank of `tensor` must be known.')
    if axis < 0:
      axis += rank
    if axis <= 0 or axis >= rank:
      raise ValueError('`axis` out of bounds for `tensor` rank.')

    output_len = axis_len + num_rows - 1

    paddings = num_rows * tf.one_hot([-1, axis], rank, axis=0, dtype=tf.int32)

    # [..., num_rows, axis_len + num_rows, ...]
    padded_tensor = tf.pad(tensor, paddings, constant_values=pad_value)

    # [..., num_rows * (axis_len + num_rows), ...]
    flat_tensor = _flatten_dims(
        padded_tensor, first_dim=axis - 1, last_dim=axis)

    padded_tensor2 = _pad_to_multiple(
        flat_tensor,
        factor=output_len,
        axis=axis - 1,
        constant_values=pad_value)

    # [..., num_rows + 1, output_len, ...]
    new_shape = tf.concat([
        tf.shape(tensor)[:(axis - 1)], [num_rows + 1, output_len],
        tf.shape(tensor)[(axis + 1):]
    ], 0)
    reshaped_tensor = tf.reshape(padded_tensor2, new_shape)

    # [..., num_rows, output_len, ...]
    output_shape = new_shape - tf.one_hot(axis - 1, depth=rank, dtype=tf.int32)
    return tf.slice(
        reshaped_tensor, begin=tf.zeros_like(output_shape), size=output_shape)


class RelativePositionGenerator(object):
  """Generates `relative_att_ids` for purely distance-based relative positions.

  This implements the clipped relative position representations originally
  described in https://arxiv.org/abs/1803.02155 .

  Attributes:
    max_distance: Integer passed from `__init__`.
    ignore_direction: Bool passed from `__init__`.
    relative_vocab_size: Integer representing the maximum number of unique ids
      output from this generator.
    left_pad_value: Integer id for all positions at or beyond max_distance to
      the left.
    right_pad_value: Integer id for all positions at or beyond max_distance to
      the right.
  """

  def __init__(self, max_distance: int, ignore_direction: bool = False):
    """Init.

    Args:
      max_distance: The maximum distance to represent. Must not be negative. All
        larger distances will be clipped to this value.
      ignore_direction: If True, both left and right position representations
        will have the same ids based on absolute distance (resulting in
        symmetric ids around the center token).
    """
    if max_distance < 0:
      raise ValueError('`max_distance` must not be negative.')
    self.max_distance = max_distance
    self.ignore_direction = ignore_direction

    self.right_pad_value = max_distance
    self.left_pad_value = max_distance if ignore_direction else 2 * max_distance

    # 0 is the first id, so vocab size is 1 + the largest id (left pad value).
    self.relative_vocab_size = self.left_pad_value + 1

  def make_relative_att_ids(self,
                            seq_len: Union[int, tf.Tensor],
                            batch_size: Optional[Union[int, tf.Tensor]] = 1,
                            name: Optional[Text] = None) -> tf.Tensor:
    """Makes relative position ids for full self-attention.

    For example, if `max_distance` is 3, `ignore_direction` is False, `seq_len`
    is 6, and `batch_size` is 1, the result is the following:
      [[
          [0, 1, 2, 3, 3, 3],
          [4, 0, 1, 2, 3, 3],
          [5, 4, 0, 1, 2, 3],
          [6, 5, 4, 0, 1, 2],
          [6, 6, 5, 4, 0, 1],
          [6, 6, 6, 5, 4, 0],
      ]]

    Args:
      seq_len: The sequence length to create ids for. Must be positive. If a
        Tensor, must be a scalar int.
      batch_size: The batch size of the result (default 1). Must be positive. If
        a Tensor, must be a scalar int. All examples in the batch will have the
        same id pattern.
      name: A name for the operation (optional).

    Returns:
      <int32>[batch_size, seq_len, seq_len] Tensor of relative position ids.
    """
    with tf.name_scope(name or 'make_relative_att_ids'):
      if isinstance(seq_len, int) and seq_len < 1:
        raise ValueError('`seq_len` must be positive.')
      if isinstance(batch_size, int) and batch_size < 1:
        raise ValueError('`batch_size` must be positive.')

      # We need the id_pattern to cover all tokens to the left of the last token
      # and all tokens to the right of the first token at the same time.
      window_size = 2 * seq_len - 1

      # [window_size]
      id_pattern = self._make_relative_id_pattern(window_size)

      # [seq_len, window_size]
      id_tensor = tf.tile(id_pattern[tf.newaxis, :], [seq_len, 1])

      # [seq_len, window_size + seq_len - 1]
      id_tensor = _skew_elements_right(id_tensor, -1)

      # [seq_len, seq_len]
      id_tensor = tf.slice(id_tensor, [0, seq_len - 1], [seq_len, seq_len])

      return tf.tile(id_tensor[tf.newaxis, :, :], [batch_size, 1, 1])

  def make_local_relative_att_ids(self,
                                  seq_len: Union[int, tf.Tensor],
                                  local_radius: int,
                                  batch_size: Optional[Union[int,
                                                             tf.Tensor]] = 1,
                                  name: Optional[Text] = None) -> tf.Tensor:
    """Makes relative position ids for local self-attention.

    The result can be used as `relative_att_ids` in
    `layers.RelativeLocalSelfAttention`.

    For example, if `max_distance` is 3, `ignore_direction` is False, `seq_len`
    is 4, `local_radius` is 5, and `batch_size` is 1, the result is the
    following:
      [[
          [6, 6, 6, 5, 4, 0, 1, 2, 3, 3, 3],
          [6, 6, 6, 5, 4, 0, 1, 2, 3, 3, 3],
          [6, 6, 6, 5, 4, 0, 1, 2, 3, 3, 3],
          [6, 6, 6, 5, 4, 0, 1, 2, 3, 3, 3],
      ]]

    Args:
      seq_len: The sequence length to create ids for. Must be positive. If a
        Tensor, must be a scalar int.
      local_radius: The local radius as expected by
        `layers.RelativeLocalSelfAttention`. Must be positive.
      batch_size: The batch size of the result (default 1). Must be positive. If
        a Tensor, must be a scalar int. All examples in the batch will have the
        same id pattern.
      name: A name for the operation (optional).

    Returns:
      <int32>[batch_size, seq_len, 2*local_radius + 1] Tensor of relative
      position ids.
    """
    with tf.name_scope(name or 'make_local_relative_att_ids'):
      if isinstance(seq_len, int) and seq_len < 1:
        raise ValueError('`seq_len` must be positive.')
      if local_radius < 1:
        raise ValueError('`local_radius` must be positive.')
      if isinstance(batch_size, int) and batch_size < 1:
        raise ValueError('`batch_size` must be positive.')

      window_size = 2 * local_radius + 1

      # [window_size]
      id_pattern = self._make_relative_id_pattern(window_size)

      return tf.tile(id_pattern[tf.newaxis, tf.newaxis, :],
                     [batch_size, seq_len, 1])

  def _make_relative_id_pattern(
      self, window_size: Union[int, tf.Tensor]) -> tf.Tensor:
    """Helper for making the relative id pattern for a particular window size.

    For example, if `max_distance` is 3, `ignore_direction` is False, and
    `window_size` is 11, the result is the following:
    [6, 6, 6, 5, 4, 0, 1, 2, 3, 3, 3].

    Args:
      window_size: Window size to return relative ids for. Must be positive and
        odd since ids will be relative to the center of the window. If a Tensor,
        must be a scalar int.

    Returns:
      <int32>[window_size] Tensor of relative position ids.
    """
    if isinstance(window_size, int):
      if window_size < 1:
        raise ValueError('`window_size` must be positive.')
      if window_size % 2 != 1:
        raise ValueError('`window_size` must be odd.')

    x = tf.range(self.max_distance + 1, dtype=tf.int32)
    x = tf.pad(x, [[self.max_distance, 0]], mode='REFLECT')
    if not self.ignore_direction:
      direction_adder = tf.concat([
          tf.fill([self.max_distance], self.max_distance),
          tf.zeros([self.max_distance + 1], dtype=tf.int32)
      ], 0)
      x += direction_adder

    len_x = x.shape.as_list()[0]
    if len_x > window_size:
      trim_amount = (len_x - window_size) // 2
      return x[trim_amount:-trim_amount]

    pad_amount = (window_size - len_x) // 2
    result = tf.pad(x, [[pad_amount, 0]], constant_values=self.left_pad_value)
    result = tf.pad(
        result, [[0, pad_amount]], constant_values=self.right_pad_value)
    return result


def read_batches(data_dir,
                 split,
                 batch_size,
                 include_answers=True,
                 shuffle=False,
                 drop_final_batch=False,
                 compression_type=''):
  """Read TriviaQA batches."""
  features = {
      'id': tf.io.FixedLenFeature([], tf.string),
      'qid': tf.io.FixedLenFeature([], tf.string),
      'context': tf.io.FixedLenFeature([], tf.string),
      'question': tf.io.FixedLenFeature([], tf.string),
      'global_token_ids': tf.io.RaggedFeature(tf.int64),
      'token_ids': tf.io.RaggedFeature(tf.int64),
      'segment_ids': tf.io.RaggedFeature(tf.int64),
      'token_offsets': tf.io.RaggedFeature(tf.int64),
  }
  if include_answers:
    features['answers'] = tf.io.RaggedFeature(
Frederick Liu's avatar
Frederick Liu committed
405
        tf.int64, partitions=(tf.io.RaggedFeature.UniformRowLength(2),))  # pytype: disable=attribute-error
Philip Pham's avatar
Philip Pham committed
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548

  dataset_builder = tfds.builder(
      'bigbird_trivia_qa/rc_wiki.preprocessed', data_dir=data_dir)
  split_info = dataset_builder.info.splits[split]
  return tf.data.experimental.make_batched_features_dataset(
      [
          os.path.join(dataset_builder.data_dir, filename)
          for filename in split_info.filenames
      ],
      batch_size=batch_size,
      features=features,
      reader=lambda path: tf.data.TFRecordDataset(path, compression_type),
      label_key='answers' if include_answers else None,
      num_epochs=1,
      shuffle=shuffle,
      shuffle_buffer_size=split_info.num_examples,
      prefetch_buffer_size=tf.data.experimental.AUTOTUNE,
      sloppy_ordering=True,
      drop_final_batch=drop_final_batch,
      reader_num_threads=8,
      parser_num_threads=16)


def scatter_labels(labels, batch_size, sequence_length):
  """Create one hot labels."""
  row_ids = labels.value_rowids()
  indices = tf.concat(
      (tf.stack((row_ids, tf.cast(labels.flat_values[:, 0],
                                  tf.int32), tf.zeros_like(row_ids)), -1),
       tf.stack((row_ids, tf.cast(labels.flat_values[:, 1],
                                  tf.int32), tf.ones_like(row_ids)), -1)), 0)
  one_hot_labels = tf.scatter_nd(indices,
                                 tf.ones(tf.shape(indices)[0], tf.float32),
                                 (batch_size, sequence_length, 2))
  return tf.minimum(one_hot_labels, 1.)


def features_map_fn(features, local_radius, relative_pos_max_distance,
                    use_hard_g2l_mask, padding_id, eos_id, null_id, cls_id,
                    sep_id, sequence_length, global_sequence_length):
  """Make features."""
  batch_size = tf.get_static_value(features['token_ids'].shape[0])
  # sequence_lengths = features['token_ids'].row_lengths()
  question_lengths = tf.argmax(
      tf.equal(features['token_ids'].to_tensor(
          shape=(batch_size, global_sequence_length)), sep_id), -1) + 1
  mapped_features = dict(
      token_ids=tf.cast(
          features['token_ids'].to_tensor(shape=(batch_size, sequence_length)),
          tf.int32),
      global_token_ids=tf.cast(
          features['global_token_ids'].to_tensor(
              shape=(batch_size, global_sequence_length)), tf.int32),
      segment_ids=tf.cast(
          features['segment_ids'].to_tensor(
              shape=(batch_size, sequence_length)), tf.int32),
  )
  relative_pos_generator = RelativePositionGenerator(
      max_distance=relative_pos_max_distance)
  # Only do long-to-long attention for non-null tokens.
  # Let the null token attend to itself.
  l2l_att_mask = tf.ones((batch_size, sequence_length, 2 * local_radius + 1),
                         tf.int32)
  l2l_att_mask *= 1 - tf.cast(
      tf.logical_or(
          tf.equal(mapped_features['token_ids'], padding_id),
          tf.equal(mapped_features['token_ids'], null_id)),
      tf.int32)[:, :, tf.newaxis]
  l2l_relative_att_ids = relative_pos_generator.make_local_relative_att_ids(
      seq_len=sequence_length, local_radius=local_radius, batch_size=batch_size)
  #
  l2g_att_mask = tf.ones((batch_size, sequence_length, global_sequence_length),
                         tf.int32)
  l2g_att_mask *= tf.cast(
      tf.not_equal(mapped_features['token_ids'], padding_id),
      tf.int32)[:, :, tf.newaxis]
  l2g_att_mask *= tf.cast(
      tf.not_equal(mapped_features['global_token_ids'], padding_id),
      tf.int32)[:, tf.newaxis, :]
  l2g_relative_att_ids = tf.fill(
      (batch_size, sequence_length, global_sequence_length),
      relative_pos_generator.relative_vocab_size + 1)
  #
  g2g_att_mask = tf.ones(
      (batch_size, global_sequence_length, global_sequence_length), tf.int32)
  g2g_att_mask *= tf.cast(
      tf.not_equal(mapped_features['global_token_ids'], padding_id),
      tf.int32)[:, :, tf.newaxis]
  g2g_relative_att_ids = relative_pos_generator.make_relative_att_ids(
      seq_len=global_sequence_length, batch_size=batch_size)
  global_sentence_mask = tf.equal(mapped_features['global_token_ids'], eos_id)
  global_question_mask = tf.logical_not(
      tf.logical_or(
          tf.logical_or(
              tf.equal(mapped_features['global_token_ids'], cls_id),
              tf.equal(mapped_features['global_token_ids'], eos_id)),
          tf.equal(mapped_features['global_token_ids'], padding_id)))
  g2g_question_mask = tf.logical_and(global_question_mask[:, tf.newaxis, :],
                                     global_question_mask[:, :, tf.newaxis])
  g2g_sentence_mask = tf.logical_and(global_sentence_mask[:, tf.newaxis, :],
                                     global_sentence_mask[:, :, tf.newaxis])
  g2g_local_mask = tf.cast(
      tf.logical_or(g2g_question_mask, g2g_sentence_mask), tf.int32)
  g2g_relative_att_ids *= g2g_local_mask
  g2g_relative_att_ids += (1 - g2g_local_mask) * (
      relative_pos_generator.relative_vocab_size + 2)
  #
  g2l_att_mask = tf.transpose(l2g_att_mask, [0, 2, 1])
  if use_hard_g2l_mask:
    global_range = tf.range(
        global_sequence_length, dtype=mapped_features['global_token_ids'].dtype)
    g2l_att_mask *= tf.cast(
        tf.logical_or(
            tf.equal(
                mapped_features['global_token_ids'], cls_id)[:, :, tf.newaxis],
            tf.equal(global_range[tf.newaxis, :, tf.newaxis],
                     mapped_features['segment_ids'][:, tf.newaxis, :])),
        tf.int32)
  g2l_relative_att_ids = tf.transpose(l2g_relative_att_ids, [0, 2, 1])
  mapped_features.update(
      dict(
          l2l_att_mask=l2l_att_mask,
          l2l_relative_att_ids=l2l_relative_att_ids,
          l2g_att_mask=l2g_att_mask,
          l2g_relative_att_ids=l2g_relative_att_ids,
          g2g_att_mask=g2g_att_mask,
          g2g_relative_att_ids=g2g_relative_att_ids,
          g2l_att_mask=g2l_att_mask,
          g2l_relative_att_ids=g2l_relative_att_ids,
          question_lengths=question_lengths,
      ))
  return mapped_features


def labels_map_fn(token_ids, labels, sequence_length):
  batch_size = tf.get_static_value(labels.shape[0])
  row_lengths = labels.row_lengths()
  empty_token_index = token_ids.row_lengths() - 1
  one_hot_labels = scatter_labels(labels, batch_size, sequence_length)
  one_hot_labels += (tf.cast(row_lengths == 0, tf.float32)[:, tf.newaxis] *
                     tf.one_hot(empty_token_index, sequence_length))[:, :,
                                                                     tf.newaxis]
  return one_hot_labels