xlnet.py 11.5 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Allen Wang's avatar
Allen Wang committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

Allen Wang's avatar
Allen Wang committed
15
"""XLNet models."""
Allen Wang's avatar
Allen Wang committed
16
17
# pylint: disable=g-classes-have-attributes

Rebecca Chen's avatar
Rebecca Chen committed
18
from typing import Any, Mapping, Optional, Union
Allen Wang's avatar
Allen Wang committed
19
20
21
22

import tensorflow as tf

from official.nlp.modeling import layers
Allen Wang's avatar
Allen Wang committed
23
from official.nlp.modeling import networks
Allen Wang's avatar
Allen Wang committed
24
25


Allen Wang's avatar
Allen Wang committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
class XLNetMaskedLM(tf.keras.layers.Layer):
  """XLNet pretraining head."""

  def __init__(self,
               vocab_size: int,
               hidden_size: int,
               initializer: str = 'glorot_uniform',
               activation: str = 'gelu',
               name=None,
               **kwargs):
    super().__init__(name=name, **kwargs)
    self._vocab_size = vocab_size
    self._hidden_size = hidden_size
    self._initializer = initializer
    self._activation = activation

  def build(self, input_shape):
    self.dense = tf.keras.layers.Dense(
        units=self._hidden_size,
        activation=self._activation,
        kernel_initializer=self._initializer,
        name='transform/dense')
    self.layer_norm = tf.keras.layers.LayerNormalization(
        axis=-1, epsilon=1e-12, name='transform/LayerNorm')
    self.bias = self.add_weight(
        'output_bias/bias',
        shape=(self._vocab_size,),
        initializer='zeros',
        trainable=True)
    super().build(input_shape)

  def call(self,
           sequence_data: tf.Tensor,
           embedding_table: tf.Tensor):
    lm_data = self.dense(sequence_data)
    lm_data = self.layer_norm(lm_data)
    lm_data = tf.matmul(lm_data, embedding_table, transpose_b=True)
    logits = tf.nn.bias_add(lm_data, self.bias)
    return logits

  def get_config(self) -> Mapping[str, Any]:
    config = {
        'vocab_size':
            self._vocab_size,
        'hidden_size':
            self._hidden_size,
        'initializer':
            self._initializer
    }
    base_config = super(XLNetMaskedLM, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))


@tf.keras.utils.register_keras_serializable(package='Text')
class XLNetPretrainer(tf.keras.Model):
  """XLNet-based pretrainer.

  This is an implementation of the network structure surrounding a
  Transformer-XL encoder as described in "XLNet: Generalized Autoregressive
  Pretraining for Language Understanding" (https://arxiv.org/abs/1906.08237).

87
  Args:
Allen Wang's avatar
Allen Wang committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
    network: An XLNet/Transformer-XL based network. This network should output a
      sequence output and list of `state` tensors.
    mlm_activation: The activation (if any) to use in the Masked LM network. If
      None, then no activation will be used.
    mlm_initializer: The initializer (if any) to use in the masked LM. Defaults
      to a Glorot uniform initializer.

  """

  def __init__(
      self,
      network: Union[tf.keras.layers.Layer, tf.keras.Model],
      mlm_activation=None,
      mlm_initializer='glorot_uniform',
Rebecca Chen's avatar
Rebecca Chen committed
102
      name: Optional[str] = None,
Allen Wang's avatar
Allen Wang committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
      **kwargs):
    super().__init__(name=name, **kwargs)
    self._config = {
        'network': network,
        'mlm_activation': mlm_activation,
        'mlm_initializer': mlm_initializer,
    }
    self._network = network
    self._hidden_size = network.get_config()['hidden_size']
    self._vocab_size = network.get_config()['vocab_size']
    self._activation = mlm_activation
    self._initializer = mlm_initializer
    self._masked_lm = XLNetMaskedLM(
        vocab_size=self._vocab_size,
        hidden_size=self._hidden_size,
        initializer=self._initializer)

  def call(self, inputs: Mapping[str, Any]):
    input_word_ids = inputs['input_word_ids']
    input_type_ids = inputs['input_type_ids']
    masked_tokens = inputs['masked_tokens']
    permutation_mask = inputs['permutation_mask']
    target_mapping = inputs['target_mapping']
    state = inputs.get('state', None)

    attention_output, state = self._network(
        input_ids=input_word_ids,
        segment_ids=input_type_ids,
        input_mask=None,
        state=state,
        permutation_mask=permutation_mask,
        target_mapping=target_mapping,
        masked_tokens=masked_tokens)

    embedding_table = self._network.get_embedding_lookup_table()
    mlm_outputs = self._masked_lm(
        sequence_data=attention_output,
        embedding_table=embedding_table)
    return mlm_outputs, state

  def get_config(self) -> Mapping[str, Any]:
    return self._config

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)

  @property
  def checkpoint_items(self):
    return dict(encoder=self._network)


Allen Wang's avatar
Allen Wang committed
155
156
157
158
159
160
161
162
@tf.keras.utils.register_keras_serializable(package='Text')
class XLNetClassifier(tf.keras.Model):
  """Classifier model based on XLNet.

  This is an implementation of the network structure surrounding a
  Transformer-XL encoder as described in "XLNet: Generalized Autoregressive
  Pretraining for Language Understanding" (https://arxiv.org/abs/1906.08237).

Allen Wang's avatar
Allen Wang committed
163
164
165
  Note: This model does not use utilize the memory mechanism used in the
  original XLNet Classifier.

166
  Args:
Allen Wang's avatar
Allen Wang committed
167
168
169
170
171
172
173
    network: An XLNet/Transformer-XL based network. This network should output a
      sequence output and list of `state` tensors.
    num_classes: Number of classes to predict from the classification network.
    initializer: The initializer (if any) to use in the classification networks.
      Defaults to a RandomNormal initializer.
    summary_type: Method used to summarize a sequence into a compact vector.
    dropout_rate: The dropout probability of the cls head.
Tianqi Liu's avatar
Tianqi Liu committed
174
    head_name: Name of the classification head.
Allen Wang's avatar
Allen Wang committed
175
176
177
178
179
180
181
182
183
  """

  def __init__(
      self,
      network: Union[tf.keras.layers.Layer, tf.keras.Model],
      num_classes: int,
      initializer: tf.keras.initializers.Initializer = 'random_normal',
      summary_type: str = 'last',
      dropout_rate: float = 0.1,
Rebecca Chen's avatar
Rebecca Chen committed
184
      head_name: str = 'sentence_prediction',  # pytype: disable=annotation-type-mismatch  # typed-keras
Allen Wang's avatar
Allen Wang committed
185
186
187
188
189
190
191
192
193
194
195
196
      **kwargs):
    super().__init__(**kwargs)
    self._network = network
    self._initializer = initializer
    self._summary_type = summary_type
    self._num_classes = num_classes
    self._config = {
        'network': network,
        'initializer': initializer,
        'num_classes': num_classes,
        'summary_type': summary_type,
        'dropout_rate': dropout_rate,
Tianqi Liu's avatar
Tianqi Liu committed
197
        'head_name': head_name,
Allen Wang's avatar
Allen Wang committed
198
199
200
201
202
203
204
205
206
207
    }

    if summary_type == 'last':
      cls_token_idx = -1
    elif summary_type == 'first':
      cls_token_idx = 0
    else:
      raise ValueError('Invalid summary type provided: %s.' % summary_type)

    self.classifier = layers.ClassificationHead(
Allen Wang's avatar
Allen Wang committed
208
        inner_dim=network.get_config()['hidden_size'],
Allen Wang's avatar
Allen Wang committed
209
210
211
212
        num_classes=num_classes,
        initializer=initializer,
        dropout_rate=dropout_rate,
        cls_token_idx=cls_token_idx,
Tianqi Liu's avatar
Tianqi Liu committed
213
        name=head_name)
Allen Wang's avatar
Allen Wang committed
214
215

  def call(self, inputs: Mapping[str, Any]):
Allen Wang's avatar
Allen Wang committed
216
217
218
    input_ids = inputs['input_word_ids']
    segment_ids = inputs['input_type_ids']
    input_mask = tf.cast(inputs['input_mask'], tf.float32)
Allen Wang's avatar
Allen Wang committed
219
220
    state = inputs.get('mems', None)

Allen Wang's avatar
Allen Wang committed
221
    attention_output, _ = self._network(
Allen Wang's avatar
Allen Wang committed
222
223
224
225
226
227
228
        input_ids=input_ids,
        segment_ids=segment_ids,
        input_mask=input_mask,
        state=state)

    logits = self.classifier(attention_output)

Allen Wang's avatar
Allen Wang committed
229
    return logits
Allen Wang's avatar
Allen Wang committed
230
231
232
233
234
235
236

  def get_config(self):
    return self._config

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)
Allen Wang's avatar
Allen Wang committed
237

Allen Wang's avatar
Allen Wang committed
238
239
240
241
242
243
244
245
  @property
  def checkpoint_items(self):
    items = dict(encoder=self._network)
    if hasattr(self.classifier, 'checkpoint_items'):
      for key, item in self.classifier.checkpoint_items.items():
        items['.'.join([self.classifier.name, key])] = item
    return items

Allen Wang's avatar
Allen Wang committed
246
247
248
249
250
251
252
253
254

@tf.keras.utils.register_keras_serializable(package='Text')
class XLNetSpanLabeler(tf.keras.Model):
  """Span labeler model based on XLNet.

  This is an implementation of the network structure surrounding a
  Transformer-XL encoder as described in "XLNet: Generalized Autoregressive
  Pretraining for Language Understanding" (https://arxiv.org/abs/1906.08237).

255
  Args:
Allen Wang's avatar
Allen Wang committed
256
257
258
259
260
261
    network: A transformer network. This network should output a sequence output
      and a classification output. Furthermore, it should expose its embedding
      table via a "get_embedding_table" method.
    start_n_top: Beam size for span start.
    end_n_top: Beam size for span end.
    dropout_rate: The dropout rate for the span labeling layer.
Allen Wang's avatar
Allen Wang committed
262
    span_labeling_activation: The activation for the span labeling head.
Allen Wang's avatar
Allen Wang committed
263
264
265
266
267
268
269
    initializer: The initializer (if any) to use in the span labeling network.
      Defaults to a Glorot uniform initializer.
  """

  def __init__(
      self,
      network: Union[tf.keras.layers.Layer, tf.keras.Model],
Allen Wang's avatar
Allen Wang committed
270
271
272
      start_n_top: int = 5,
      end_n_top: int = 5,
      dropout_rate: float = 0.1,
Allen Wang's avatar
Allen Wang committed
273
      span_labeling_activation: tf.keras.initializers.Initializer = 'tanh',
Rebecca Chen's avatar
Rebecca Chen committed
274
      initializer: tf.keras.initializers.Initializer = 'glorot_uniform',  # pytype: disable=annotation-type-mismatch  # typed-keras
Allen Wang's avatar
Allen Wang committed
275
276
277
278
279
280
281
282
283
284
      **kwargs):
    super().__init__(**kwargs)
    self._config = {
        'network': network,
        'start_n_top': start_n_top,
        'end_n_top': end_n_top,
        'dropout_rate': dropout_rate,
        'span_labeling_activation': span_labeling_activation,
        'initializer': initializer,
    }
Allen Wang's avatar
Allen Wang committed
285
286
287
288
289
290
291
292
293
    network_config = network.get_config()
    try:
      input_width = network_config['inner_size']
      self._xlnet_base = True
    except KeyError:
      # BertEncoder uses 'intermediate_size' due to legacy naming.
      input_width = network_config['intermediate_size']
      self._xlnet_base = False

Allen Wang's avatar
Allen Wang committed
294
295
296
297
298
299
300
    self._network = network
    self._initializer = initializer
    self._start_n_top = start_n_top
    self._end_n_top = end_n_top
    self._dropout_rate = dropout_rate
    self._activation = span_labeling_activation
    self.span_labeling = networks.XLNetSpanLabeling(
Allen Wang's avatar
Allen Wang committed
301
        input_width=input_width,
Allen Wang's avatar
Allen Wang committed
302
303
304
305
306
307
308
        start_n_top=self._start_n_top,
        end_n_top=self._end_n_top,
        activation=self._activation,
        dropout_rate=self._dropout_rate,
        initializer=self._initializer)

  def call(self, inputs: Mapping[str, Any]):
Allen Wang's avatar
Allen Wang committed
309
310
    input_word_ids = inputs['input_word_ids']
    input_type_ids = inputs['input_type_ids']
Allen Wang's avatar
Allen Wang committed
311
    input_mask = inputs['input_mask']
Allen Wang's avatar
Allen Wang committed
312
313
314
    class_index = inputs['class_index']
    paragraph_mask = inputs['paragraph_mask']
    start_positions = inputs.get('start_positions', None)
Allen Wang's avatar
Allen Wang committed
315

Allen Wang's avatar
Allen Wang committed
316
317
318
319
320
321
322
323
324
325
326
327
    if self._xlnet_base:
      attention_output, _ = self._network(
          input_ids=input_word_ids,
          segment_ids=input_type_ids,
          input_mask=input_mask)
    else:
      network_output_dict = self._network(dict(
          input_word_ids=input_word_ids,
          input_type_ids=input_type_ids,
          input_mask=input_mask))
      attention_output = network_output_dict['sequence_output']

Allen Wang's avatar
Allen Wang committed
328
329
330
    outputs = self.span_labeling(
        sequence_data=attention_output,
        class_index=class_index,
Allen Wang's avatar
Allen Wang committed
331
        paragraph_mask=paragraph_mask,
Allen Wang's avatar
Allen Wang committed
332
        start_positions=start_positions)
Allen Wang's avatar
Allen Wang committed
333
334
335
336
337
    return outputs

  @property
  def checkpoint_items(self):
    return dict(encoder=self._network)
Allen Wang's avatar
Allen Wang committed
338
339
340
341
342
343
344
345

  def get_config(self):
    return self._config

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)