bleu.py 6.42 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
"""Script to compute official BLEU score.

Source:
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/bleu_hook.py
"""

import collections
import math
import re
import sys
import unicodedata

import numpy as np
import tensorflow as tf


class UnicodeRegex(object):
  """Ad-hoc hack to recognize all punctuation and symbols."""

  def __init__(self):
    punctuation = self.property_chars("P")
    self.nondigit_punct_re = re.compile(r"([^\d])([" + punctuation + r"])")
    self.punct_nondigit_re = re.compile(r"([" + punctuation + r"])([^\d])")
    self.symbol_re = re.compile("([" + self.property_chars("S") + "])")

  def property_chars(self, prefix):
    return "".join(
        chr(x)
        for x in range(sys.maxunicode)
        if unicodedata.category(chr(x)).startswith(prefix))


uregex = UnicodeRegex()


def bleu_tokenize(string):
  r"""Tokenize a string following the official BLEU implementation.

  See https://github.com/moses-smt/mosesdecoder/'
           'blob/master/scripts/generic/mteval-v14.pl#L954-L983
  In our case, the input string is expected to be just one line
  and no HTML entities de-escaping is needed.
  So we just tokenize on punctuation and symbols,
  except when a punctuation is preceded and followed by a digit
  (e.g. a comma/dot as a thousand/decimal separator).

  Note that a numer (e.g. a year) followed by a dot at the end of sentence
  is NOT tokenized,
  i.e. the dot stays with the number because `s/(\p{P})(\P{N})/ $1 $2/g`
  does not match this case (unless we add a space after each sentence).
  However, this error is already in the original mteval-v14.pl
  and we want to be consistent with it.

  Args:
    string: the input string

  Returns:
    a list of tokens
  """
  string = uregex.nondigit_punct_re.sub(r"\1 \2 ", string)
  string = uregex.punct_nondigit_re.sub(r" \1 \2", string)
  string = uregex.symbol_re.sub(r" \1 ", string)
  return string.split()


def bleu_wrapper(ref_filename, hyp_filename, case_sensitive=False):
  """Compute BLEU for two files (reference and hypothesis translation)."""
  ref_lines = tf.io.gfile.GFile(ref_filename).read().strip().splitlines()
  hyp_lines = tf.io.gfile.GFile(hyp_filename).read().strip().splitlines()
  return bleu_on_list(ref_lines, hyp_lines, case_sensitive)


def _get_ngrams_with_counter(segment, max_order):
  """Extracts all n-grams up to a given maximum order from an input segment.

  Args:
    segment: text segment from which n-grams will be extracted.
92
    max_order: maximum length in tokens of the n-grams returned by this methods.
93
94
95
96
97
98
99
100
101
102
103
104
105

  Returns:
    The Counter containing all n-grams upto max_order in segment
    with a count of how many times each n-gram occurred.
  """
  ngram_counts = collections.Counter()
  for order in range(1, max_order + 1):
    for i in range(0, len(segment) - order + 1):
      ngram = tuple(segment[i:i + order])
      ngram_counts[ngram] += 1
  return ngram_counts


106
107
108
def compute_bleu(reference_corpus,
                 translation_corpus,
                 max_order=4,
109
110
111
112
                 use_bp=True):
  """Computes BLEU score of translated segments against one or more references.

  Args:
113
114
115
116
    reference_corpus: list of references for each translation. Each reference
      should be tokenized into a list of tokens.
    translation_corpus: list of translations to score. Each translation should
      be tokenized into a list of tokens.
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
    max_order: Maximum n-gram order to use when computing BLEU score.
    use_bp: boolean, whether to apply brevity penalty.

  Returns:
    BLEU score.
  """
  reference_length = 0
  translation_length = 0
  bp = 1.0
  geo_mean = 0

  matches_by_order = [0] * max_order
  possible_matches_by_order = [0] * max_order
  precisions = []

  for (references, translations) in zip(reference_corpus, translation_corpus):
    reference_length += len(references)
    translation_length += len(translations)
    ref_ngram_counts = _get_ngrams_with_counter(references, max_order)
    translation_ngram_counts = _get_ngrams_with_counter(translations, max_order)

138
    overlap = dict((ngram, min(count, translation_ngram_counts[ngram]))
139
140
141
142
143
                   for ngram, count in ref_ngram_counts.items())

    for ngram in overlap:
      matches_by_order[len(ngram) - 1] += overlap[ngram]
    for ngram in translation_ngram_counts:
144
145
      possible_matches_by_order[len(ngram) -
                                1] += translation_ngram_counts[ngram]
146
147
148
149
150
151
152
153

  precisions = [0] * max_order
  smooth = 1.0

  for i in range(0, max_order):
    if possible_matches_by_order[i] > 0:
      precisions[i] = float(matches_by_order[i]) / possible_matches_by_order[i]
      if matches_by_order[i] > 0:
154
155
        precisions[i] = float(
            matches_by_order[i]) / possible_matches_by_order[i]
156
157
158
159
160
161
162
163
164
165
166
167
      else:
        smooth *= 2
        precisions[i] = 1.0 / (smooth * possible_matches_by_order[i])
    else:
      precisions[i] = 0.0

  if max(precisions) > 0:
    p_log_sum = sum(math.log(p) for p in precisions if p)
    geo_mean = math.exp(p_log_sum / max_order)

  if use_bp:
    ratio = translation_length / reference_length
168
169
    bp = 0. if ratio < 1e-6 else math.exp(1 -
                                          1. / ratio) if ratio < 1.0 else 1.0
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
  bleu = geo_mean * bp
  return np.float32(bleu)


def bleu_on_list(ref_lines, hyp_lines, case_sensitive=False):
  """Compute BLEU for two list of strings (reference and hypothesis)."""
  if len(ref_lines) != len(hyp_lines):
    raise ValueError(
        "Reference and translation files have different number of "
        "lines (%d VS %d). If training only a few steps (100-200), the "
        "translation may be empty." % (len(ref_lines), len(hyp_lines)))
  if not case_sensitive:
    ref_lines = [x.lower() for x in ref_lines]
    hyp_lines = [x.lower() for x in hyp_lines]
  ref_tokens = [bleu_tokenize(x) for x in ref_lines]
  hyp_tokens = [bleu_tokenize(x) for x in hyp_lines]
  return compute_bleu(ref_tokens, hyp_tokens) * 100