wmt_dataloader_test.py 4.78 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Frederick Liu's avatar
Frederick Liu committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

Frederick Liu's avatar
Frederick Liu committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
"""Tests for official.nlp.data.wmt_dataloader."""
import os
from absl.testing import parameterized

import tensorflow as tf

from sentencepiece import SentencePieceTrainer
from official.nlp.data import wmt_dataloader


def _generate_line_file(filepath, lines):
  with tf.io.gfile.GFile(filepath, 'w') as f:
    for l in lines:
      f.write('{}\n'.format(l))


def _generate_record_file(filepath, src_lines, tgt_lines, unique_id=False):
  writer = tf.io.TFRecordWriter(filepath)
  for i, (src, tgt) in enumerate(zip(src_lines, tgt_lines)):
    features = {
        'en': tf.train.Feature(
            bytes_list=tf.train.BytesList(
                value=[src.encode()])),
        'reverse_en': tf.train.Feature(
            bytes_list=tf.train.BytesList(
                value=[tgt.encode()])),
    }
    if unique_id:
      features['unique_id'] = tf.train.Feature(
          int64_list=tf.train.Int64List(value=[i])),
    example = tf.train.Example(
        features=tf.train.Features(
            feature=features))
    writer.write(example.SerializeToString())
  writer.close()


def _train_sentencepiece(input_path, vocab_size, model_path, eos_id=1):
  argstr = ' '.join([
      f'--input={input_path}', f'--vocab_size={vocab_size}',
      '--character_coverage=0.995',
      f'--model_prefix={model_path}', '--model_type=bpe',
      '--bos_id=-1', '--pad_id=0', f'--eos_id={eos_id}', '--unk_id=2'
  ])
  SentencePieceTrainer.Train(argstr)


class WMTDataLoaderTest(tf.test.TestCase, parameterized.TestCase):

  def setUp(self):
    super(WMTDataLoaderTest, self).setUp()
    self._temp_dir = self.get_temp_dir()
    src_lines = [
        'abc ede fg',
        'bbcd ef a g',
        'de f a a g'
    ]
    tgt_lines = [
        'dd cc a ef  g',
        'bcd ef a g',
        'gef cd ba'
    ]
    self._record_train_input_path = os.path.join(self._temp_dir, 'train.record')
    _generate_record_file(self._record_train_input_path, src_lines, tgt_lines)
    self._record_test_input_path = os.path.join(self._temp_dir, 'test.record')
    _generate_record_file(self._record_test_input_path, src_lines, tgt_lines,
                          unique_id=True)
    self._sentencepeice_input_path = os.path.join(self._temp_dir, 'inputs.txt')
    _generate_line_file(self._sentencepeice_input_path, src_lines + tgt_lines)
    sentencepeice_model_prefix = os.path.join(self._temp_dir, 'sp')
    _train_sentencepiece(self._sentencepeice_input_path, 20,
                         sentencepeice_model_prefix)
    self._sentencepeice_model_path = '{}.model'.format(
        sentencepeice_model_prefix)

  @parameterized.named_parameters(
      ('train_static', True, True, 100, (2, 35)),
      ('train_non_static', True, False, 100, (12, 7)),
      ('non_train_static', False, True, 3, (3, 35)),
      ('non_train_non_static', False, False, 50, (2, 7)),)
  def test_load_dataset(
      self, is_training, static_batch, batch_size, expected_shape):
    data_config = wmt_dataloader.WMTDataConfig(
        input_path=self._record_train_input_path
        if is_training else self._record_test_input_path,
        max_seq_length=35,
        global_batch_size=batch_size,
        is_training=is_training,
        static_batch=static_batch,
        src_lang='en',
        tgt_lang='reverse_en',
        sentencepiece_model_path=self._sentencepeice_model_path)
    dataset = wmt_dataloader.WMTDataLoader(data_config).load()
    examples = next(iter(dataset))
    inputs, targets = examples['inputs'], examples['targets']
    self.assertEqual(inputs.shape, expected_shape)
    self.assertEqual(targets.shape, expected_shape)

  def test_load_dataset_raise_invalid_window(self):
    batch_tokens_size = 10  # this is too small to form buckets.
    data_config = wmt_dataloader.WMTDataConfig(
        input_path=self._record_train_input_path,
        max_seq_length=100,
        global_batch_size=batch_tokens_size,
        is_training=True,
        static_batch=False,
        src_lang='en',
        tgt_lang='reverse_en',
        sentencepiece_model_path=self._sentencepeice_model_path)
    with self.assertRaisesRegex(
        ValueError, 'The token budget, global batch size, is too small.*'):
      _ = wmt_dataloader.WMTDataLoader(data_config).load()


if __name__ == '__main__':
  tf.test.main()