pretrain_dataloader_test.py 8.93 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
15
16
17
18
19
20
21
22
23
24
25
"""Tests for official.nlp.data.pretrain_dataloader."""
import itertools
import os

from absl.testing import parameterized
import numpy as np
import tensorflow as tf

from official.nlp.data import pretrain_dataloader


26
27
28
29
30
31
32
33
34
35
36
37
def create_int_feature(values):
  f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
  return f


def _create_fake_bert_dataset(
    output_path,
    seq_length,
    max_predictions_per_seq,
    use_position_id,
    use_next_sentence_label,
    use_v2_feature_names=False):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
38
39
40
41
42
43
44
45
46
47
48
  """Creates a fake dataset."""
  writer = tf.io.TFRecordWriter(output_path)

  def create_float_feature(values):
    f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
    return f

  for _ in range(100):
    features = {}
    input_ids = np.random.randint(100, size=(seq_length))
    features["input_mask"] = create_int_feature(np.ones_like(input_ids))
Hongkun Yu's avatar
Hongkun Yu committed
49
50
51
52
53
54
    if use_v2_feature_names:
      features["input_word_ids"] = create_int_feature(input_ids)
      features["input_type_ids"] = create_int_feature(np.ones_like(input_ids))
    else:
      features["input_ids"] = create_int_feature(input_ids)
      features["segment_ids"] = create_int_feature(np.ones_like(input_ids))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

    features["masked_lm_positions"] = create_int_feature(
        np.random.randint(100, size=(max_predictions_per_seq)))
    features["masked_lm_ids"] = create_int_feature(
        np.random.randint(100, size=(max_predictions_per_seq)))
    features["masked_lm_weights"] = create_float_feature(
        [1.0] * max_predictions_per_seq)

    if use_next_sentence_label:
      features["next_sentence_labels"] = create_int_feature([1])

    if use_position_id:
      features["position_ids"] = create_int_feature(range(0, seq_length))

    tf_example = tf.train.Example(features=tf.train.Features(feature=features))
    writer.write(tf_example.SerializeToString())
  writer.close()


74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
def _create_fake_xlnet_dataset(
    output_path, seq_length, max_predictions_per_seq):
  """Creates a fake dataset."""
  writer = tf.io.TFRecordWriter(output_path)
  for _ in range(100):
    features = {}
    input_ids = np.random.randint(100, size=(seq_length))
    num_boundary_indices = np.random.randint(1, seq_length)

    if max_predictions_per_seq is not None:
      input_mask = np.zeros_like(input_ids)
      input_mask[:max_predictions_per_seq] = 1
      np.random.shuffle(input_mask)
    else:
      input_mask = np.ones_like(input_ids)

    features["input_mask"] = create_int_feature(input_mask)
    features["input_word_ids"] = create_int_feature(input_ids)
    features["input_type_ids"] = create_int_feature(np.ones_like(input_ids))
    features["boundary_indices"] = create_int_feature(
        sorted(np.random.randint(seq_length, size=(num_boundary_indices))))
    features["target"] = create_int_feature(input_ids + 1)
    features["label"] = create_int_feature([1])
    tf_example = tf.train.Example(features=tf.train.Features(feature=features))
    writer.write(tf_example.SerializeToString())
  writer.close()


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
102
103
104
105
106
107
108
109
110
111
class BertPretrainDataTest(tf.test.TestCase, parameterized.TestCase):

  @parameterized.parameters(itertools.product(
      (False, True),
      (False, True),
  ))
  def test_load_data(self, use_next_sentence_label, use_position_id):
    train_data_path = os.path.join(self.get_temp_dir(), "train.tf_record")
    seq_length = 128
    max_predictions_per_seq = 20
112
    _create_fake_bert_dataset(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
        train_data_path,
        seq_length,
        max_predictions_per_seq,
        use_next_sentence_label=use_next_sentence_label,
        use_position_id=use_position_id)
    data_config = pretrain_dataloader.BertPretrainDataConfig(
        input_path=train_data_path,
        max_predictions_per_seq=max_predictions_per_seq,
        seq_length=seq_length,
        global_batch_size=10,
        is_training=True,
        use_next_sentence_label=use_next_sentence_label,
        use_position_id=use_position_id)

    dataset = pretrain_dataloader.BertPretrainDataLoader(data_config).load()
    features = next(iter(dataset))
    self.assertLen(features,
                   6 + int(use_next_sentence_label) + int(use_position_id))
    self.assertIn("input_word_ids", features)
    self.assertIn("input_mask", features)
    self.assertIn("input_type_ids", features)
    self.assertIn("masked_lm_positions", features)
    self.assertIn("masked_lm_ids", features)
    self.assertIn("masked_lm_weights", features)

    self.assertEqual("next_sentence_labels" in features,
                     use_next_sentence_label)
    self.assertEqual("position_ids" in features, use_position_id)

Hongkun Yu's avatar
Hongkun Yu committed
142
143
144
145
  def test_v2_feature_names(self):
    train_data_path = os.path.join(self.get_temp_dir(), "train.tf_record")
    seq_length = 128
    max_predictions_per_seq = 20
146
    _create_fake_bert_dataset(
Hongkun Yu's avatar
Hongkun Yu committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
        train_data_path,
        seq_length,
        max_predictions_per_seq,
        use_next_sentence_label=True,
        use_position_id=False,
        use_v2_feature_names=True)
    data_config = pretrain_dataloader.BertPretrainDataConfig(
        input_path=train_data_path,
        max_predictions_per_seq=max_predictions_per_seq,
        seq_length=seq_length,
        global_batch_size=10,
        is_training=True,
        use_next_sentence_label=True,
        use_position_id=False,
        use_v2_feature_names=True)

    dataset = pretrain_dataloader.BertPretrainDataLoader(data_config).load()
    features = next(iter(dataset))
    self.assertIn("input_word_ids", features)
    self.assertIn("input_mask", features)
    self.assertIn("input_type_ids", features)
    self.assertIn("masked_lm_positions", features)
    self.assertIn("masked_lm_ids", features)
    self.assertIn("masked_lm_weights", features)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
172

173
174
175
class XLNetPretrainDataTest(parameterized.TestCase, tf.test.TestCase):

  @parameterized.parameters(itertools.product(
176
      ("single_token", "whole_word", "token_span"),
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
      (0, 64),
      (20, None),
      ))
  def test_load_data(
      self, sample_strategy, reuse_length, max_predictions_per_seq):
    train_data_path = os.path.join(self.get_temp_dir(), "train.tf_record")
    seq_length = 128
    batch_size = 5

    _create_fake_xlnet_dataset(
        train_data_path, seq_length, max_predictions_per_seq)

    data_config = pretrain_dataloader.XLNetPretrainDataConfig(
        input_path=train_data_path,
        max_predictions_per_seq=max_predictions_per_seq,
        seq_length=seq_length,
        global_batch_size=batch_size,
        is_training=True,
        reuse_length=reuse_length,
        sample_strategy=sample_strategy,
        min_num_tokens=1,
        max_num_tokens=2,
        permutation_size=seq_length // 2,
        leak_ratio=0.1)

202
203
    if max_predictions_per_seq is None:
      with self.assertRaises(ValueError):
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
        dataset = pretrain_dataloader.XLNetPretrainDataLoader(
            data_config).load()
        features = next(iter(dataset))
    else:
      dataset = pretrain_dataloader.XLNetPretrainDataLoader(data_config).load()
      features = next(iter(dataset))

      self.assertIn("input_word_ids", features)
      self.assertIn("input_type_ids", features)
      self.assertIn("permutation_mask", features)
      self.assertIn("masked_tokens", features)
      self.assertIn("target", features)
      self.assertIn("target_mask", features)

      self.assertAllClose(features["input_word_ids"].shape,
                          (batch_size, seq_length))
      self.assertAllClose(features["input_type_ids"].shape,
                          (batch_size, seq_length))
      self.assertAllClose(features["permutation_mask"].shape,
                          (batch_size, seq_length, seq_length))
      self.assertAllClose(features["masked_tokens"].shape,
                          (batch_size, seq_length,))
      if max_predictions_per_seq is not None:
        self.assertIn("target_mapping", features)
        self.assertAllClose(features["target_mapping"].shape,
                            (batch_size, max_predictions_per_seq, seq_length))
        self.assertAllClose(features["target_mask"].shape,
                            (batch_size, max_predictions_per_seq))
        self.assertAllClose(features["target"].shape,
                            (batch_size, max_predictions_per_seq))
      else:
        self.assertAllClose(features["target_mask"].shape,
                            (batch_size, seq_length))
        self.assertAllClose(features["target"].shape,
                            (batch_size, seq_length))


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
241
242
if __name__ == "__main__":
  tf.test.main()