"src/vscode:/vscode.git/clone" did not exist on "c3a3c6780c28b703565d02169b2e1e5a52214eb6"
tf_utils.py 6.27 KB
Newer Older
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Hongkun Yu's avatar
Hongkun Yu committed
14

15
16
17
"""Common TF utilities."""

import six
Hongkun Yu's avatar
Hongkun Yu committed
18
import tensorflow as tf
19

20
from tensorflow.python.util import deprecation
21
22
from official.modeling import activations

23

24
25
26
27
@deprecation.deprecated(
    None,
    "tf.keras.layers.Layer supports multiple positional args and kwargs as "
    "input tensors. pack/unpack inputs to override __call__ is no longer "
Hongkun Yu's avatar
Hongkun Yu committed
28
    "needed.")
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
def pack_inputs(inputs):
  """Pack a list of `inputs` tensors to a tuple.

  Args:
    inputs: a list of tensors.

  Returns:
    a tuple of tensors. if any input is None, replace it with a special constant
    tensor.
  """
  inputs = tf.nest.flatten(inputs)
  outputs = []
  for x in inputs:
    if x is None:
      outputs.append(tf.constant(0, shape=[], dtype=tf.int32))
    else:
      outputs.append(x)
  return tuple(outputs)


49
50
51
52
@deprecation.deprecated(
    None,
    "tf.keras.layers.Layer supports multiple positional args and kwargs as "
    "input tensors. pack/unpack inputs to override __call__ is no longer "
Hongkun Yu's avatar
Hongkun Yu committed
53
    "needed.")
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
def unpack_inputs(inputs):
  """unpack a tuple of `inputs` tensors to a tuple.

  Args:
    inputs: a list of tensors.

  Returns:
    a tuple of tensors. if any input is a special constant tensor, replace it
    with None.
  """
  inputs = tf.nest.flatten(inputs)
  outputs = []
  for x in inputs:
    if is_special_none_tensor(x):
      outputs.append(None)
    else:
      outputs.append(x)
  x = tuple(outputs)

  # To trick the very pointless 'unbalanced-tuple-unpacking' pylint check
  # from triggering.
  if len(x) == 1:
    return x[0]
  return tuple(outputs)


def is_special_none_tensor(tensor):
  """Checks if a tensor is a special None Tensor."""
  return tensor.shape.ndims == 0 and tensor.dtype == tf.int32


85
def get_activation(identifier, use_keras_layer=False):
86
87
88
89
90
  """Maps a identifier to a Python function, e.g., "relu" => `tf.nn.relu`.

  It checks string first and if it is one of customized activation not in TF,
  the corresponding activation will be returned. For non-customized activation
  names and callable identifiers, always fallback to tf.keras.activations.get.
91

92
93
94
  Prefers using keras layers when use_keras_layer=True. Now it only supports
  'relu', 'linear', 'identity', 'swish'.

95
  Args:
96
    identifier: String name of the activation function or callable.
97
    use_keras_layer: If True, use keras layer if identifier is allow-listed.
98
99

  Returns:
100
101
    A Python function corresponding to the activation function or a keras
    activation layer when use_keras_layer=True.
102
  """
103
  if isinstance(identifier, six.string_types):
104
105
106
107
108
109
110
    identifier = str(identifier).lower()
    if use_keras_layer:
      keras_layer_allowlist = {
          "relu": "relu",
          "linear": "linear",
          "identity": "linear",
          "swish": "swish",
111
          "sigmoid": "sigmoid",
112
          "relu6": tf.nn.relu6,
113
114
          "hard_swish": activations.hard_swish,
          "hard_sigmoid": activations.hard_sigmoid,
115
116
117
      }
      if identifier in keras_layer_allowlist:
        return tf.keras.layers.Activation(keras_layer_allowlist[identifier])
118
    name_to_fn = {
119
        "gelu": activations.gelu,
120
121
        "simple_swish": activations.simple_swish,
        "hard_swish": activations.hard_swish,
122
123
        "relu6": activations.relu6,
        "hard_sigmoid": activations.hard_sigmoid,
124
        "identity": activations.identity,
125
    }
126
127
128
    if identifier in name_to_fn:
      return tf.keras.activations.get(name_to_fn[identifier])
  return tf.keras.activations.get(identifier)
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188


def get_shape_list(tensor, expected_rank=None, name=None):
  """Returns a list of the shape of tensor, preferring static dimensions.

  Args:
    tensor: A tf.Tensor object to find the shape of.
    expected_rank: (optional) int. The expected rank of `tensor`. If this is
      specified and the `tensor` has a different rank, and exception will be
      thrown.
    name: Optional name of the tensor for the error message.

  Returns:
    A list of dimensions of the shape of tensor. All static dimensions will
    be returned as python integers, and dynamic dimensions will be returned
    as tf.Tensor scalars.
  """
  if expected_rank is not None:
    assert_rank(tensor, expected_rank, name)

  shape = tensor.shape.as_list()

  non_static_indexes = []
  for (index, dim) in enumerate(shape):
    if dim is None:
      non_static_indexes.append(index)

  if not non_static_indexes:
    return shape

  dyn_shape = tf.shape(tensor)
  for index in non_static_indexes:
    shape[index] = dyn_shape[index]
  return shape


def assert_rank(tensor, expected_rank, name=None):
  """Raises an exception if the tensor rank is not of the expected rank.

  Args:
    tensor: A tf.Tensor to check the rank of.
    expected_rank: Python integer or list of integers, expected rank.
    name: Optional name of the tensor for the error message.

  Raises:
    ValueError: If the expected shape doesn't match the actual shape.
  """
  expected_rank_dict = {}
  if isinstance(expected_rank, six.integer_types):
    expected_rank_dict[expected_rank] = True
  else:
    for x in expected_rank:
      expected_rank_dict[x] = True

  actual_rank = tensor.shape.ndims
  if actual_rank not in expected_rank_dict:
    raise ValueError(
        "For the tensor `%s`, the actual tensor rank `%d` (shape = %s) is not "
        "equal to the expected tensor rank `%s`" %
        (name, actual_rank, str(tensor.shape), str(expected_rank)))
Hongkun Yu's avatar
Hongkun Yu committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203


def safe_mean(losses):
  """Computes a safe mean of the losses.

  Args:
    losses: `Tensor` whose elements contain individual loss measurements.

  Returns:
    A scalar representing the mean of `losses`. If `num_present` is zero,
      then zero is returned.
  """
  total = tf.reduce_sum(losses)
  num_elements = tf.cast(tf.size(losses), dtype=losses.dtype)
  return tf.math.divide_no_nan(total, num_elements)