README.md 13.8 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# Object Detection Models on TensorFlow 2

**WARNING**: This repository will be deprecated and replaced by the solid
implementations inside vision/beta/.

## Prerequsite
To get started, download the code from TensorFlow models GitHub repository or
use the pre-installed Google Cloud VM.

```bash
git clone https://github.com/tensorflow/models.git
```

Next, make sure to use TensorFlow 2.1+ on Google Cloud. Also here are
a few package you need to install to get started:

```bash
sudo apt-get install -y python-tk && \
pip3 install -r ~/models/official/requirements.txt
```

## Train RetinaNet on TPU

### Train a vanilla ResNet-50 based RetinaNet.

```bash
TPU_NAME="<your GCP TPU name>"
MODEL_DIR="<path to the directory to store model files>"
RESNET_CHECKPOINT="<path to the pre-trained Resnet-50 checkpoint>"
TRAIN_FILE_PATTERN="<path to the TFRecord training data>"
EVAL_FILE_PATTERN="<path to the TFRecord validation data>"
VAL_JSON_FILE="<path to the validation annotation JSON file>"
33
python3 ~/models/official/legacy/detection/main.py \
Yeqing Li's avatar
Yeqing Li committed
34
35
36
37
38
39
40
41
42
43
  --strategy_type=tpu \
  --tpu="${TPU_NAME?}" \
  --model_dir="${MODEL_DIR?}" \
  --mode=train \
  --params_override="{ type: retinanet, train: { checkpoint: { path: ${RESNET_CHECKPOINT?}, prefix: resnet50/ }, train_file_pattern: ${TRAIN_FILE_PATTERN?} }, eval: { val_json_file: ${VAL_JSON_FILE?}, eval_file_pattern: ${EVAL_FILE_PATTERN?} } }"
```

The pre-trained ResNet-50 checkpoint can be downloaded [here](https://storage.cloud.google.com/cloud-tpu-checkpoints/model-garden-vision/detection/resnet50-2018-02-07.tar.gz).

Note: The ResNet implementation under
44
[detection/](https://github.com/tensorflow/models/tree/master/official/legacy/detection)
Yeqing Li's avatar
Yeqing Li committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
is currently different from the one under
[classification/](https://github.com/tensorflow/models/tree/master/official/vision/image_classification),
so the checkpoints are not compatible.
We will unify the implementation soon.


### Train a SpineNet-49 based RetinaNet.

```bash
TPU_NAME="<your GCP TPU name>"
MODEL_DIR="<path to the directory to store model files>"
TRAIN_FILE_PATTERN="<path to the TFRecord training data>"
EVAL_FILE_PATTERN="<path to the TFRecord validation data>"
VAL_JSON_FILE="<path to the validation annotation JSON file>"
59
python3 ~/models/official/legacy/detection/main.py \
Yeqing Li's avatar
Yeqing Li committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
  --strategy_type=tpu \
  --tpu="${TPU_NAME?}" \
  --model_dir="${MODEL_DIR?}" \
  --mode=train \
  --params_override="{ type: retinanet, architecture: {backbone: spinenet, multilevel_features: identity}, spinenet: {model_id: 49}, train_file_pattern: ${TRAIN_FILE_PATTERN?} }, eval: { val_json_file: ${VAL_JSON_FILE?}, eval_file_pattern: ${EVAL_FILE_PATTERN?} } }"
```


### Train a custom RetinaNet using the config file.

First, create a YAML config file, e.g. *my_retinanet.yaml*. This file specifies
the parameters to be overridden, which should at least include the following
fields.

```YAML
# my_retinanet.yaml
type: 'retinanet'
train:
  train_file_pattern: <path to the TFRecord training data>
eval:
  eval_file_pattern: <path to the TFRecord validation data>
  val_json_file: <path to the validation annotation JSON file>
```

Once the YAML config file is created, you can launch the training using the
following command.

```bash
TPU_NAME="<your GCP TPU name>"
MODEL_DIR="<path to the directory to store model files>"
90
python3 ~/models/official/legacy/detection/main.py \
Yeqing Li's avatar
Yeqing Li committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
  --strategy_type=tpu \
  --tpu="${TPU_NAME?}" \
  --model_dir="${MODEL_DIR?}" \
  --mode=train \
  --config_file="my_retinanet.yaml"
```

## Train RetinaNet on GPU

Training on GPU is similar to that on TPU. The major change is the strategy
type (use "[mirrored](https://www.tensorflow.org/api_docs/python/tf/distribute/MirroredStrategy)" for multiple GPU and
"[one_device](https://www.tensorflow.org/api_docs/python/tf/distribute/OneDeviceStrategy)" for single GPU).

Multi-GPUs example (assuming there are 8GPU connected to the host):

```bash
MODEL_DIR="<path to the directory to store model files>"
108
python3 ~/models/official/legacy/detection/main.py \
Yeqing Li's avatar
Yeqing Li committed
109
110
111
112
113
114
115
116
117
  --strategy_type=mirrored \
  --num_gpus=8 \
  --model_dir="${MODEL_DIR?}" \
  --mode=train \
  --config_file="my_retinanet.yaml"
```

```bash
MODEL_DIR="<path to the directory to store model files>"
118
python3 ~/models/official/legacy/detection/main.py \
Yeqing Li's avatar
Yeqing Li committed
119
120
121
122
123
124
125
126
127
128
  --strategy_type=one_device \
  --num_gpus=1 \
  --model_dir="${MODEL_DIR?}" \
  --mode=train \
  --config_file="my_retinanet.yaml"
```

An example with inline configuration (YAML or JSON format):

```
129
python3 ~/models/official/legacy/detection/main.py \
Yeqing Li's avatar
Yeqing Li committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
  --model_dir=<model folder> \
  --strategy_type=one_device \
  --num_gpus=1 \
  --mode=train \
  --params_override="eval:
 eval_file_pattern: <Eval TFRecord file pattern>
 batch_size: 8
 val_json_file: <COCO format groundtruth JSON file>
predict:
 predict_batch_size: 8
architecture:
 use_bfloat16: False
train:
 total_steps: 1
 batch_size: 8
 train_file_pattern: <Eval TFRecord file pattern>
use_tpu: False
"
```

---

## Train Mask R-CNN on TPU

### Train a vanilla ResNet-50 based Mask R-CNN.

```bash
TPU_NAME="<your GCP TPU name>"
MODEL_DIR="<path to the directory to store model files>"
RESNET_CHECKPOINT="<path to the pre-trained Resnet-50 checkpoint>"
TRAIN_FILE_PATTERN="<path to the TFRecord training data>"
EVAL_FILE_PATTERN="<path to the TFRecord validation data>"
VAL_JSON_FILE="<path to the validation annotation JSON file>"
163
python3 ~/models/official/legacy/detection/main.py \
Yeqing Li's avatar
Yeqing Li committed
164
165
166
167
168
169
170
171
172
173
174
  --strategy_type=tpu \
  --tpu=${TPU_NAME} \
  --model_dir=${MODEL_DIR} \
  --mode=train \
  --model=mask_rcnn \
  --params_override="{train: { checkpoint: { path: ${RESNET_CHECKPOINT}, prefix: resnet50/ }, train_file_pattern: ${TRAIN_FILE_PATTERN} }, eval: { val_json_file: ${VAL_JSON_FILE}, eval_file_pattern: ${EVAL_FILE_PATTERN} } }"
```

The pre-trained ResNet-50 checkpoint can be downloaded [here](https://storage.cloud.google.com/cloud-tpu-checkpoints/model-garden-vision/detection/resnet50-2018-02-07.tar.gz).

Note: The ResNet implementation under
175
[detection/](https://github.com/tensorflow/models/tree/master/official/legacy/detection)
Yeqing Li's avatar
Yeqing Li committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
is currently different from the one under
[classification/](https://github.com/tensorflow/models/tree/master/official/vision/image_classification),
so the checkpoints are not compatible.
We will unify the implementation soon.


### Train a SpineNet-49 based Mask R-CNN.

```bash
TPU_NAME="<your GCP TPU name>"
MODEL_DIR="<path to the directory to store model files>"
TRAIN_FILE_PATTERN="<path to the TFRecord training data>"
EVAL_FILE_PATTERN="<path to the TFRecord validation data>"
VAL_JSON_FILE="<path to the validation annotation JSON file>"
190
python3 ~/models/official/legacy/detection/main.py \
Yeqing Li's avatar
Yeqing Li committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
  --strategy_type=tpu \
  --tpu="${TPU_NAME?}" \
  --model_dir="${MODEL_DIR?}" \
  --mode=train \
  --model=mask_rcnn \
  --params_override="{architecture: {backbone: spinenet, multilevel_features: identity}, spinenet: {model_id: 49}, train_file_pattern: ${TRAIN_FILE_PATTERN?} }, eval: { val_json_file: ${VAL_JSON_FILE?}, eval_file_pattern: ${EVAL_FILE_PATTERN?} } }"
```


### Train a custom Mask R-CNN using the config file.

First, create a YAML config file, e.g. *my_maskrcnn.yaml*.
This file specifies the parameters to be overridden,
which should at least include the following fields.

```YAML
# my_maskrcnn.yaml
train:
  train_file_pattern: <path to the TFRecord training data>
eval:
  eval_file_pattern: <path to the TFRecord validation data>
  val_json_file: <path to the validation annotation JSON file>
```

Once the YAML config file is created, you can launch the training using the
following command.

```bash
TPU_NAME="<your GCP TPU name>"
MODEL_DIR="<path to the directory to store model files>"
221
python3 ~/models/official/legacy/detection/main.py \
Yeqing Li's avatar
Yeqing Li committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
  --strategy_type=tpu \
  --tpu=${TPU_NAME} \
  --model_dir=${MODEL_DIR} \
  --mode=train \
  --model=mask_rcnn \
  --config_file="my_maskrcnn.yaml"
```

## Train Mask R-CNN on GPU

Training on GPU is similar to that on TPU. The major change is the strategy type
(use
"[mirrored](https://www.tensorflow.org/api_docs/python/tf/distribute/MirroredStrategy)"
for multiple GPU and
"[one_device](https://www.tensorflow.org/api_docs/python/tf/distribute/OneDeviceStrategy)"
for single GPU).

Multi-GPUs example (assuming there are 8GPU connected to the host):

```bash
MODEL_DIR="<path to the directory to store model files>"
243
python3 ~/models/official/legacy/detection/main.py \
Yeqing Li's avatar
Yeqing Li committed
244
245
246
247
248
249
250
251
252
253
  --strategy_type=mirrored \
  --num_gpus=8 \
  --model_dir=${MODEL_DIR} \
  --mode=train \
  --model=mask_rcnn \
  --config_file="my_maskrcnn.yaml"
```

```bash
MODEL_DIR="<path to the directory to store model files>"
254
python3 ~/models/official/legacy/detection/main.py \
Yeqing Li's avatar
Yeqing Li committed
255
256
257
258
259
260
261
262
263
264
265
  --strategy_type=one_device \
  --num_gpus=1 \
  --model_dir=${MODEL_DIR} \
  --mode=train \
  --model=mask_rcnn \
  --config_file="my_maskrcnn.yaml"
```

An example with inline configuration (YAML or JSON format):

```
266
python3 ~/models/official/legacy/detection/main.py \
Yeqing Li's avatar
Yeqing Li committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
  --model_dir=<model folder> \
  --strategy_type=one_device \
  --num_gpus=1 \
  --mode=train \
  --model=mask_rcnn \
  --params_override="eval:
 eval_file_pattern: <Eval TFRecord file pattern>
 batch_size: 8
 val_json_file: <COCO format groundtruth JSON file>
predict:
 predict_batch_size: 8
architecture:
 use_bfloat16: False
train:
 total_steps: 1000
 batch_size: 8
 train_file_pattern: <Eval TFRecord file pattern>
use_tpu: False
"
```

## Train ShapeMask on TPU

### Train a ResNet-50 based ShapeMask.

```bash
TPU_NAME="<your GCP TPU name>"
MODEL_DIR="<path to the directory to store model files>"
RESNET_CHECKPOINT="<path to the pre-trained Resnet-50 checkpoint>"
TRAIN_FILE_PATTERN="<path to the TFRecord training data>"
EVAL_FILE_PATTERN="<path to the TFRecord validation data>"
VAL_JSON_FILE="<path to the validation annotation JSON file>"
SHAPE_PRIOR_PATH="<path to shape priors>"
300
python3 ~/models/official/legacy/detection/main.py \
Yeqing Li's avatar
Yeqing Li committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
  --strategy_type=tpu \
  --tpu=${TPU_NAME} \
  --model_dir=${MODEL_DIR} \
  --mode=train \
  --model=shapemask \
  --params_override="{train: { checkpoint: { path: ${RESNET_CHECKPOINT}, prefix: resnet50/ }, train_file_pattern: ${TRAIN_FILE_PATTERN} }, eval: { val_json_file: ${VAL_JSON_FILE}, eval_file_pattern: ${EVAL_FILE_PATTERN} } shapemask_head: {use_category_for_mask: true, shape_prior_path: ${SHAPE_PRIOR_PATH}} }"
```

The pre-trained ResNet-50 checkpoint can be downloaded [here](https://storage.cloud.google.com/cloud-tpu-checkpoints/model-garden-vision/detection/resnet50-2018-02-07.tar.gz).

The shape priors can be downloaded [here]
(https://storage.googleapis.com/cloud-tpu-checkpoints/shapemask/kmeans_class_priors_91x20x32x32.npy)


### Train a custom ShapeMask using the config file.

First, create a YAML config file, e.g. *my_shapemask.yaml*.
This file specifies the parameters to be overridden:

```YAML
# my_shapemask.yaml
train:
  train_file_pattern: <path to the TFRecord training data>
  total_steps: <total steps to train>
  batch_size: <training batch size>
eval:
  eval_file_pattern: <path to the TFRecord validation data>
  val_json_file: <path to the validation annotation JSON file>
  batch_size: <evaluation batch size>
shapemask_head:
  shape_prior_path: <path to shape priors>
```

Once the YAML config file is created, you can launch the training using the
following command.

```bash
TPU_NAME="<your GCP TPU name>"
MODEL_DIR="<path to the directory to store model files>"
340
python3 ~/models/official/legacy/detection/main.py \
Yeqing Li's avatar
Yeqing Li committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
  --strategy_type=tpu \
  --tpu=${TPU_NAME} \
  --model_dir=${MODEL_DIR} \
  --mode=train \
  --model=shapemask \
  --config_file="my_shapemask.yaml"
```

## Train ShapeMask on GPU

Training on GPU is similar to that on TPU. The major change is the strategy type
(use
"[mirrored](https://www.tensorflow.org/api_docs/python/tf/distribute/MirroredStrategy)"
for multiple GPU and
"[one_device](https://www.tensorflow.org/api_docs/python/tf/distribute/OneDeviceStrategy)"
for single GPU).

Multi-GPUs example (assuming there are 8GPU connected to the host):

```bash
MODEL_DIR="<path to the directory to store model files>"
362
python3 ~/models/official/legacy/detection/main.py \
Yeqing Li's avatar
Yeqing Li committed
363
364
365
366
367
368
369
370
371
372
373
374
  --strategy_type=mirrored \
  --num_gpus=8 \
  --model_dir=${MODEL_DIR} \
  --mode=train \
  --model=shapemask \
  --config_file="my_shapemask.yaml"
```

A single GPU example

```bash
MODEL_DIR="<path to the directory to store model files>"
375
python3 ~/models/official/legacy/detection/main.py \
Yeqing Li's avatar
Yeqing Li committed
376
377
378
379
380
381
382
383
384
385
386
387
  --strategy_type=one_device \
  --num_gpus=1 \
  --model_dir=${MODEL_DIR} \
  --mode=train \
  --model=shapemask \
  --config_file="my_shapemask.yaml"
```


An example with inline configuration (YAML or JSON format):

```
388
python3 ~/models/official/legacy/detection/main.py \
Yeqing Li's avatar
Yeqing Li committed
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
  --model_dir=<model folder> \
  --strategy_type=one_device \
  --num_gpus=1 \
  --mode=train \
  --model=shapemask \
  --params_override="eval:
 eval_file_pattern: <Eval TFRecord file pattern>
 batch_size: 8
 val_json_file: <COCO format groundtruth JSON file>
train:
 total_steps: 1000
 batch_size: 8
 train_file_pattern: <Eval TFRecord file pattern>
use_tpu: False
"
```


### Run the evaluation (after training)

```
410
python3 /usr/share/models/official/legacy/detection/main.py \
Yeqing Li's avatar
Yeqing Li committed
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
   --strategy_type=tpu \
   --tpu=${TPU_NAME} \
   --model_dir=${MODEL_DIR} \
   --mode=eval \
   --model=shapemask \
   --params_override="{eval: { val_json_file: ${VAL_JSON_FILE}, eval_file_pattern: ${EVAL_FILE_PATTERN}, eval_samples: 5000 } }"
```

`MODEL_DIR` needs to point to the trained path of ShapeMask model.
Change `strategy_type=mirrored` and `num_gpus=1` to run on a GPU.

Note: The JSON groundtruth file is useful for [COCO dataset](http://cocodataset.org/#home) and can be
downloaded from the [COCO website](http://cocodataset.org/#download). For custom dataset, it is unncessary because the groundtruth can be included in the TFRecord files.

## References

1.  [Focal Loss for Dense Object Detection](https://arxiv.org/abs/1708.02002).
    Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. IEEE
    International Conference on Computer Vision (ICCV), 2017.