xlnet_benchmark.py 8.56 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes XLNet benchmarks and accuracy tests."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import os
import time

# pylint: disable=g-bad-import-order
Hongkun Yu's avatar
Hongkun Yu committed
26

27
28
29
30
31
32
from absl import flags
from absl.testing import flagsaver
import tensorflow as tf
# pylint: enable=g-bad-import-order

from official.benchmark import bert_benchmark_utils as benchmark_utils
Jing Li's avatar
Jing Li committed
33
from official.benchmark import owner_utils
34
from official.nlp.xlnet import run_classifier
Hongkun Yu's avatar
Hongkun Yu committed
35
from official.nlp.xlnet import run_squad
36
from official.benchmark import benchmark_wrappers
37

38
39
40
41
42

# pylint: disable=line-too-long
PRETRAINED_CHECKPOINT_PATH = 'gs://cloud-tpu-checkpoints/xlnet/large/xlnet_model-1'
CLASSIFIER_TRAIN_DATA_PATH = 'gs://tf-perfzero-data/xlnet/imdb/spiece.model.len-512.train.tf_record'
CLASSIFIER_EVAL_DATA_PATH = 'gs://tf-perfzero-data/xlnet/imdb/spiece.model.len-512.dev.eval.tf_record'
Hongkun Yu's avatar
Hongkun Yu committed
43
SQUAD_DATA_PATH = 'gs://tf-perfzero-data/xlnet/squadv2_cased/'
44
45
46
47
48
# pylint: enable=line-too-long

FLAGS = flags.FLAGS


Hongkun Yu's avatar
Hongkun Yu committed
49
class XLNetBenchmarkBase(benchmark_utils.BertBenchmarkBase):
50
51
  """Base class to hold methods common to test classes in the module."""

Jing Li's avatar
Jing Li committed
52
53
  def __init__(self, output_dir=None, tpu=None):
    super(XLNetBenchmarkBase, self).__init__(output_dir=output_dir, tpu=tpu)
54
55
56
57
58
59
60
61
    self.num_epochs = None
    self.num_steps_per_epoch = None

  @flagsaver.flagsaver
  def _run_xlnet_classifier(self):
    """Starts XLNet classification task."""
    run_classifier.main(unused_argv=None)

Hongkun Yu's avatar
Hongkun Yu committed
62
63
64
65
  @flagsaver.flagsaver
  def _run_xlnet_squad(self):
    """Starts XLNet classification task."""
    run_squad.main(unused_argv=None)
66

Hongkun Yu's avatar
Hongkun Yu committed
67
68
69

class XLNetClassifyAccuracy(XLNetBenchmarkBase):
  """Short accuracy test for XLNet classifier model.
70
71
72
73
74
75

  Tests XLNet classification task model accuracy. The naming
  convention of below test cases follow
  `benchmark_(number of gpus)_gpu_(dataset type)` format.
  """

Jing Li's avatar
Jing Li committed
76
  def __init__(self, output_dir=None, tpu=None, **kwargs):
77
78
79
80
    self.train_data_path = CLASSIFIER_TRAIN_DATA_PATH
    self.eval_data_path = CLASSIFIER_EVAL_DATA_PATH
    self.pretrained_checkpoint_path = PRETRAINED_CHECKPOINT_PATH

Jing Li's avatar
Jing Li committed
81
    super(XLNetClassifyAccuracy, self).__init__(output_dir=output_dir, tpu=tpu)
82

83
  @benchmark_wrappers.enable_runtime_flags
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
  def _run_and_report_benchmark(self,
                                training_summary_path,
                                min_accuracy=0.95,
                                max_accuracy=0.97):
    """Starts XLNet accuracy benchmark test."""

    start_time_sec = time.time()
    self._run_xlnet_classifier()
    wall_time_sec = time.time() - start_time_sec

    with tf.io.gfile.GFile(training_summary_path, 'rb') as reader:
      summary = json.loads(reader.read().decode('utf-8'))

    super(XLNetClassifyAccuracy, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=min_accuracy,
        max_accuracy=max_accuracy)

  def _setup(self):
    super(XLNetClassifyAccuracy, self)._setup()
    FLAGS.test_data_size = 25024
    FLAGS.train_batch_size = 16
    FLAGS.seq_len = 512
    FLAGS.mem_len = 0
    FLAGS.n_layer = 24
    FLAGS.d_model = 1024
    FLAGS.d_embed = 1024
    FLAGS.n_head = 16
    FLAGS.d_head = 64
    FLAGS.d_inner = 4096
    FLAGS.untie_r = True
    FLAGS.n_class = 2
    FLAGS.ff_activation = 'gelu'
    FLAGS.strategy_type = 'mirror'
    FLAGS.learning_rate = 2e-5
    FLAGS.train_steps = 4000
    FLAGS.warmup_steps = 500
    FLAGS.iterations = 200
    FLAGS.bi_data = False
    FLAGS.init_checkpoint = self.pretrained_checkpoint_path
    FLAGS.train_tfrecord_path = self.train_data_path
    FLAGS.test_tfrecord_path = self.eval_data_path

Jing Li's avatar
Jing Li committed
128
  @owner_utils.Owner('tf-model-garden')
129
130
131
132
133
134
135
  def benchmark_8_gpu_imdb(self):
    """Run XLNet model accuracy test with 8 GPUs."""
    self._setup()
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_imdb')
    # Sets timer_callback to None as we do not use it now.
    self.timer_callback = None

136
137
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
138
139
    self._run_and_report_benchmark(summary_path)

Jing Li's avatar
Jing Li committed
140
141
142
143
144
145
146
147
148
149
150
151
152
  @owner_utils.Owner('tf-model-garden')
  def benchmark_2x2_tpu_imdb(self):
    """Run XLNet model accuracy test on 2x2 tpu."""
    self._setup()
    FLAGS.strategy_type = 'tpu'
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu_imdb')
    # Sets timer_callback to None as we do not use it now.
    self.timer_callback = None

    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    self._run_and_report_benchmark(summary_path)

153

Hongkun Yu's avatar
Hongkun Yu committed
154
155
156
157
158
159
160
161
class XLNetSquadAccuracy(XLNetBenchmarkBase):
  """Short accuracy test for XLNet squad model.

  Tests XLNet squad task model accuracy. The naming
  convention of below test cases follow
  `benchmark_(number of gpus)_gpu_(dataset type)` format.
  """

Jing Li's avatar
Jing Li committed
162
  def __init__(self, output_dir=None, tpu=None, **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
163
    self.train_data_path = SQUAD_DATA_PATH
Hongkun Yu's avatar
Hongkun Yu committed
164
165
166
    self.predict_file = os.path.join(SQUAD_DATA_PATH, 'dev-v2.0.json')
    self.test_data_path = os.path.join(SQUAD_DATA_PATH, '12048.eval.tf_record')
    self.spiece_model_file = os.path.join(SQUAD_DATA_PATH, 'spiece.cased.model')
Hongkun Yu's avatar
Hongkun Yu committed
167
168
    self.pretrained_checkpoint_path = PRETRAINED_CHECKPOINT_PATH

Jing Li's avatar
Jing Li committed
169
    super(XLNetSquadAccuracy, self).__init__(output_dir=output_dir, tpu=tpu)
Hongkun Yu's avatar
Hongkun Yu committed
170

171
  @benchmark_wrappers.enable_runtime_flags
Hongkun Yu's avatar
Hongkun Yu committed
172
173
  def _run_and_report_benchmark(self,
                                training_summary_path,
Hongkun Yu's avatar
Hongkun Yu committed
174
175
                                min_accuracy=87.0,
                                max_accuracy=89.0):
Hongkun Yu's avatar
Hongkun Yu committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    """Starts XLNet accuracy benchmark test."""

    start_time_sec = time.time()
    self._run_xlnet_squad()
    wall_time_sec = time.time() - start_time_sec

    with tf.io.gfile.GFile(training_summary_path, 'rb') as reader:
      summary = json.loads(reader.read().decode('utf-8'))

    super(XLNetSquadAccuracy, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=min_accuracy,
        max_accuracy=max_accuracy)

  def _setup(self):
    super(XLNetSquadAccuracy, self)._setup()
    FLAGS.train_batch_size = 16
    FLAGS.seq_len = 512
    FLAGS.mem_len = 0
    FLAGS.n_layer = 24
    FLAGS.d_model = 1024
    FLAGS.d_embed = 1024
    FLAGS.n_head = 16
    FLAGS.d_head = 64
    FLAGS.d_inner = 4096
    FLAGS.untie_r = True
    FLAGS.ff_activation = 'gelu'
    FLAGS.strategy_type = 'mirror'
    FLAGS.learning_rate = 3e-5
    FLAGS.train_steps = 8000
    FLAGS.warmup_steps = 1000
    FLAGS.iterations = 1000
    FLAGS.bi_data = False
    FLAGS.init_checkpoint = self.pretrained_checkpoint_path
    FLAGS.train_tfrecord_path = self.train_data_path
    FLAGS.test_tfrecord_path = self.test_data_path
    FLAGS.spiece_model_file = self.spiece_model_file
    FLAGS.predict_file = self.predict_file
Jing Li's avatar
Jing Li committed
215
216
    FLAGS.adam_epsilon = 1e-6
    FLAGS.lr_layer_decay_rate = 0.75
Hongkun Yu's avatar
Hongkun Yu committed
217

Jing Li's avatar
Jing Li committed
218
  @owner_utils.Owner('tf-model-garden')
Hongkun Yu's avatar
Hongkun Yu committed
219
220
221
222
223
224
225
226
227
228
229
230
  def benchmark_8_gpu_squadv2(self):
    """Run XLNet model squad v2 accuracy test with 8 GPUs."""
    self._setup()
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squadv2')
    FLAGS.predict_dir = FLAGS.model_dir
    # Sets timer_callback to None as we do not use it now.
    self.timer_callback = None

    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    self._run_and_report_benchmark(summary_path)

Jing Li's avatar
Jing Li committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
  @owner_utils.Owner('tf-model-garden')
  def benchmark_2x2_tpu_squadv2(self):
    """Run XLNet model squad v2 accuracy test on 2x2 tpu."""
    self._setup()
    FLAGS.strategy_type = 'tpu'
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu_squadv2')
    FLAGS.predict_dir = FLAGS.model_dir
    # Sets timer_callback to None as we do not use it now.
    self.timer_callback = None

    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    self._run_and_report_benchmark(summary_path)

Hongkun Yu's avatar
Hongkun Yu committed
245

246
247
if __name__ == '__main__':
  tf.test.main()