tf_scan_benchmark.py 4.12 KB
Newer Older
Sai Ganesh Bandiatmakuri's avatar
Sai Ganesh Bandiatmakuri committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Script to setup a tf scan e2e benchmark."""

import time

import numpy as np
import tensorflow as tf
from tqdm import tqdm

from official.benchmark import perfzero_benchmark


# pylint: disable=invalid-name
# pylint: disable=no-value-for-parameter
# pylint: disable=unused-variable
def gen_batches(num_batches, batch_size, units):
  for _ in range(num_batches):
    x = np.random.random((batch_size, 20, units))
    y = np.random.randint(1, units, size=(batch_size, 20))
    yield x, y


class MyModel(tf.keras.models.Model):
  """Test model."""

  def __init__(self, units):
    super().__init__()

    self._tf_layers = {}

    self.units = units

    self.transition_param = self.add_weight(
        name="transition_param", shape=(units, units))

    self.optimizer = tf.keras.optimizers.Adam()
    self._training = False

  def _loss_fn_with_scan(self, inputs, transition_params):
    first_input = tf.slice(inputs, [0, 0, 0], [-1, 1, -1])
    first_input = tf.squeeze(first_input, [1])
    rest_of_input = tf.slice(inputs, [0, 1, 0], [-1, -1, -1])
    rest_of_input = tf.transpose(rest_of_input, [1, 0, 2])
    transition_params = tf.expand_dims(transition_params, 0)

    def _scan_fn(_state, _inputs):
      _state = tf.expand_dims(_state, 2)
      transition_scores = _state + transition_params
      new_alphas = _inputs + tf.reduce_logsumexp(transition_scores, [1])
      return new_alphas

    all_alphas = tf.transpose(
        tf.scan(_scan_fn, rest_of_input, first_input), [1, 0, 2])
    # add first state for sequences of length 1
    all_alphas = tf.concat([tf.expand_dims(first_input, 1), all_alphas], 1)
    return all_alphas

  def _loss(self, x, y):
    logits = tf.cast(x, dtype=tf.float32)
    loss = self._loss_fn_with_scan(logits, self.transition_param)
    return tf.reduce_mean(loss)

  @tf.function
  def train_on_batch(self, *args):
    with tf.GradientTape(persistent=True) as tape:
      loss = self._loss(*args)
    grads = tape.gradient(loss, self.trainable_weights)
    self.optimizer.apply_gradients(zip(grads, self.trainable_variables))
    return loss

  def train(self, epochs, batch_size, num_batches):
    data_generator_iter = gen_batches(num_batches, batch_size, self.units)
    sample_x, sample_y = next(data_generator_iter)
    self.train_on_batch(sample_x, sample_y)
    self._training = True
    progress_bar = tqdm(range(epochs), desc="Epochs")
    for epoch in progress_bar:
      for batch_x, batch_y in data_generator_iter:
        loss = self.train_on_batch(batch_x, batch_y)
      progress_bar.update(1)
      progress_bar.set_postfix({"loss": f"{loss.numpy():.3f}"})


def _run_benchmark(model):
  """Runs the benchmark."""
  np.random.seed(123)
  num_batches = 5000
  batch_size = 32
  epochs = 100

  start_time = time.time()
  model.train(epochs, batch_size, num_batches)
  end_time = time.time()
  wall_time = end_time - start_time
  return wall_time


class TfScanE2EBenchmark(perfzero_benchmark.PerfZeroBenchmark):
  """Scan E2E benchmark."""

  def benchmark_cpu(self):
    units = 64
    model = MyModel(units)
    wall_time = _run_benchmark(model)
    self.report_benchmark(iters=-1, wall_time=wall_time)

  def benchmark_cpu_avg_4(self):
    units = 64
    model = MyModel(units)

    num_trials = 4
    wall_times = []
    for _ in range(num_trials):
      wall_times.append(_run_benchmark(model))
    avg_wall_time = sum(wall_times) / float(len(wall_times))
    self.report_benchmark(iters=-1, wall_time=avg_wall_time)


if __name__ == "__main__":
  tf.test.main()