synthetic_util.py 4.42 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Helper functions to generate data directly on devices."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import random
import string

from absl import logging
import tensorflow as tf


# The `SyntheticDataset` is a temporary solution for generating synthetic data
# directly on devices. It is only useful for Keras with Distribution
# Strategies. We will have better support in `tf.data` or Distribution Strategy
# later.
class SyntheticDataset(object):
  """A dataset that generates synthetic data on each device."""

  def __init__(self, dataset, split_by=1):
    # dataset.take(1) doesn't have GPU kernel.
    with tf.device('device:CPU:0'):
      tensor = tf.data.experimental.get_single_element(dataset.take(1))
    flat_tensor = tf.nest.flatten(tensor)
    variable_data = []
    initializers = []
    for t in flat_tensor:
      rebatched_t = tf.split(t, num_or_size_splits=split_by, axis=0)[0]
      assert rebatched_t.shape.is_fully_defined(), rebatched_t.shape
Hongkun Yu's avatar
Hongkun Yu committed
45
46
      v = tf.compat.v1.get_local_variable(
          self._random_name(), initializer=rebatched_t)
Hongkun Yu's avatar
Hongkun Yu committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
      variable_data.append(v)
      initializers.append(v.initializer)
    input_data = tf.nest.pack_sequence_as(tensor, variable_data)
    self._iterator = SyntheticIterator(input_data, initializers)

  def _random_name(self, size=10, chars=string.ascii_uppercase + string.digits):
    return ''.join(random.choice(chars) for _ in range(size))

  def __iter__(self):
    return self._iterator

  def make_one_shot_iterator(self):
    return self._iterator

  def make_initializable_iterator(self):
    return self._iterator


class SyntheticIterator(object):
  """A dataset that generates synthetic data on each device."""

  def __init__(self, input_data, initializers):
    self._input_data = input_data
    self._initializers = initializers

  def get_next(self):
    return self._input_data

  def next(self):
    return self.__next__()

  def __next__(self):
    try:
      return self.get_next()
    except tf.errors.OutOfRangeError:
      raise StopIteration

  def initialize(self):
    if tf.executing_eagerly():
      return tf.no_op()
    else:
      return self._initializers


def _monkey_patch_dataset_method(strategy):
  """Monkey-patch `strategy`'s `make_dataset_iterator` method."""
Hongkun Yu's avatar
Hongkun Yu committed
93

Hongkun Yu's avatar
Hongkun Yu committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
  def make_dataset(self, dataset):
    logging.info('Using pure synthetic data.')
    with self.scope():
      if self.extended._global_batch_size:  # pylint: disable=protected-access
        return SyntheticDataset(dataset, self.num_replicas_in_sync)
      else:
        return SyntheticDataset(dataset)

  def make_iterator(self, dataset):
    dist_dataset = make_dataset(self, dataset)
    return iter(dist_dataset)

  strategy.orig_make_dataset_iterator = strategy.make_dataset_iterator
  strategy.make_dataset_iterator = make_iterator
  strategy.orig_distribute_dataset = strategy.experimental_distribute_dataset
  strategy.experimental_distribute_dataset = make_dataset


def _undo_monkey_patch_dataset_method(strategy):
  if hasattr(strategy, 'orig_make_dataset_iterator'):
    strategy.make_dataset_iterator = strategy.orig_make_dataset_iterator
  if hasattr(strategy, 'orig_distribute_dataset'):
    strategy.make_dataset_iterator = strategy.orig_distribute_dataset


def set_up_synthetic_data():
  _monkey_patch_dataset_method(tf.distribute.OneDeviceStrategy)
  _monkey_patch_dataset_method(tf.distribute.MirroredStrategy)
  _monkey_patch_dataset_method(
      tf.distribute.experimental.MultiWorkerMirroredStrategy)


def undo_set_up_synthetic_data():
  _undo_monkey_patch_dataset_method(tf.distribute.OneDeviceStrategy)
  _undo_monkey_patch_dataset_method(tf.distribute.MirroredStrategy)
  _undo_monkey_patch_dataset_method(
      tf.distribute.experimental.MultiWorkerMirroredStrategy)