benchmark_lib_test.py 4.56 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tensorflow_models.official.benchmark.benchmark_lib."""
# pylint: disable=g-direct-tensorflow-import

from absl.testing import parameterized
Le Hou's avatar
Le Hou committed
20
import gin
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import tensorflow as tf

from tensorflow.python.distribute import combinations
from tensorflow.python.distribute import strategy_combinations
from official.common import registry_imports  # pylint: disable=unused-import
from official.benchmark import benchmark_lib
from official.core import exp_factory
from official.modeling import hyperparams


def all_strategy_combinations():
  return combinations.combine(
      distribution=[
          strategy_combinations.default_strategy,
          strategy_combinations.cloud_tpu_strategy,
          strategy_combinations.one_device_strategy_gpu,
      ],)


class BenchmarkLibTest(tf.test.TestCase, parameterized.TestCase):

  def setUp(self):
    super(BenchmarkLibTest, self).setUp()
    self._test_config = {
        'trainer': {
            'steps_per_loop': 10,
            'optimizer_config': {
                'optimizer': {
                    'type': 'sgd'
                },
                'learning_rate': {
                    'type': 'constant'
                }
            },
            'continuous_eval_timeout': 5,
            'train_steps': 20,
            'validation_steps': 10
        },
    }

  @combinations.generate(
      combinations.combine(
          distribution=[
              strategy_combinations.default_strategy,
              strategy_combinations.cloud_tpu_strategy,
              strategy_combinations.one_device_strategy_gpu,
          ],
          execution_mode=['performance', 'accuracy'],
      ))
  def test_benchmark(self, distribution, execution_mode):

    model_dir = self.get_temp_dir()
    params = exp_factory.get_exp_config('mock')
    params = hyperparams.override_params_dict(
        params, self._test_config, is_strict=True)

    benchmark_data = benchmark_lib.run_benchmark(execution_mode,
                                                 params,
                                                 model_dir,
                                                 distribution)

    self.assertIn('examples_per_second', benchmark_data)
    self.assertIn('wall_time', benchmark_data)
    self.assertIn('startup_time', benchmark_data)

    if execution_mode == 'accuracy':
      self.assertIn('metrics', benchmark_data)

Le Hou's avatar
Le Hou committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
  @combinations.generate(
      combinations.combine(
          distribution=[
              strategy_combinations.default_strategy,
              strategy_combinations.cloud_tpu_strategy,
              strategy_combinations.one_device_strategy_gpu,
          ],
          execution_mode=['performance', 'accuracy'],
      ))
  def test_fast_training_benchmark(self, distribution, execution_mode):

    model_dir = self.get_temp_dir()
    with gin.unlock_config():
      gin.parse_config_files_and_bindings(
          None,
          "get_initialize_fn.stacking_pattern = 'dense_{:layer_id}/'\n"
          "StageParamProgressor.stage_overrides = ("
          "    {'trainer': {'train_steps': 1}},"
          "    {'trainer': {'train_steps': 2}},"
          ")")
    params = exp_factory.get_exp_config('mock')
    params = hyperparams.override_params_dict(
        params, self._test_config, is_strict=True)

    benchmark_data = benchmark_lib.run_fast_training_benchmark(execution_mode,
                                                               params,
                                                               model_dir,
                                                               distribution)

    if execution_mode == 'performance':
      self.assertEqual(dict(examples_per_second=0.0,
                            wall_time=0.0,
                            startup_time=0.0),
                       benchmark_data)
    else:
      self.assertIn('wall_time', benchmark_data)
      self.assertIn('metrics', benchmark_data)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
127
128
if __name__ == '__main__':
  tf.test.main()