image_classification.py 14.2 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14
15

# Lint as: python3
Abdullah Rashwan's avatar
Abdullah Rashwan committed
16
17
"""Image classification configuration definition."""
import os
Abdullah Rashwan's avatar
Abdullah Rashwan committed
18
from typing import List, Optional
Abdullah Rashwan's avatar
Abdullah Rashwan committed
19

Abdullah Rashwan's avatar
Abdullah Rashwan committed
20
import dataclasses
Abdullah Rashwan's avatar
Abdullah Rashwan committed
21

22
from official.core import config_definitions as cfg
Abdullah Rashwan's avatar
Abdullah Rashwan committed
23
24
25
26
from official.core import exp_factory
from official.modeling import hyperparams
from official.modeling import optimization
from official.vision.beta.configs import common
Abdullah Rashwan's avatar
Abdullah Rashwan committed
27
from official.vision.beta.configs import backbones
Abdullah Rashwan's avatar
Abdullah Rashwan committed
28
29
30
31
32
33
34
35
36
37
38


@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
  """Input config for training."""
  input_path: str = ''
  global_batch_size: int = 0
  is_training: bool = True
  dtype: str = 'float32'
  shuffle_buffer_size: int = 10000
  cycle_length: int = 10
Abdullah Rashwan's avatar
Abdullah Rashwan committed
39
  is_multilabel: bool = False
40
41
42
  aug_rand_hflip: bool = True
  aug_type: Optional[
      common.Augmentation] = None  # Choose from AutoAugment and RandAugment.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
43
  file_type: str = 'tfrecord'
Fan Yang's avatar
Fan Yang committed
44
45
  image_field_key: str = 'image/encoded'
  label_field_key: str = 'image/class/label'
Abdullah Rashwan's avatar
Abdullah Rashwan committed
46

47
48
49
50
  # Keep for backward compatibility.
  aug_policy: Optional[str] = None  # None, 'autoaug', or 'randaug'.
  randaug_magnitude: Optional[int] = 10

Abdullah Rashwan's avatar
Abdullah Rashwan committed
51
52
53

@dataclasses.dataclass
class ImageClassificationModel(hyperparams.Config):
Pengchong Jin's avatar
Pengchong Jin committed
54
  """The model config."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
55
56
57
58
59
  num_classes: int = 0
  input_size: List[int] = dataclasses.field(default_factory=list)
  backbone: backbones.Backbone = backbones.Backbone(
      type='resnet', resnet=backbones.ResNet())
  dropout_rate: float = 0.0
Pengchong Jin's avatar
Pengchong Jin committed
60
61
  norm_activation: common.NormActivation = common.NormActivation(
      use_sync_bn=False)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
62
63
64
65
66
67
68
69
70
71
72
  # Adds a BatchNormalization layer pre-GlobalAveragePooling in classification
  add_head_batch_norm: bool = False


@dataclasses.dataclass
class Losses(hyperparams.Config):
  one_hot: bool = True
  label_smoothing: float = 0.0
  l2_weight_decay: float = 0.0


Pengchong Jin's avatar
Pengchong Jin committed
73
74
75
76
77
@dataclasses.dataclass
class Evaluation(hyperparams.Config):
  top_k: int = 5


Abdullah Rashwan's avatar
Abdullah Rashwan committed
78
79
@dataclasses.dataclass
class ImageClassificationTask(cfg.TaskConfig):
Pengchong Jin's avatar
Pengchong Jin committed
80
  """The task config."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
81
82
83
84
  model: ImageClassificationModel = ImageClassificationModel()
  train_data: DataConfig = DataConfig(is_training=True)
  validation_data: DataConfig = DataConfig(is_training=False)
  losses: Losses = Losses()
Pengchong Jin's avatar
Pengchong Jin committed
85
  evaluation: Evaluation = Evaluation()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
86
87
  init_checkpoint: Optional[str] = None
  init_checkpoint_modules: str = 'all'  # all or backbone
Fan Yang's avatar
Fan Yang committed
88
89
  model_output_keys: Optional[List[int]] = dataclasses.field(
      default_factory=list)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119


@exp_factory.register_config_factory('image_classification')
def image_classification() -> cfg.ExperimentConfig:
  """Image classification general."""
  return cfg.ExperimentConfig(
      task=ImageClassificationTask(),
      trainer=cfg.TrainerConfig(),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])


IMAGENET_TRAIN_EXAMPLES = 1281167
IMAGENET_VAL_EXAMPLES = 50000
IMAGENET_INPUT_PATH_BASE = 'imagenet-2012-tfrecord'


@exp_factory.register_config_factory('resnet_imagenet')
def image_classification_imagenet() -> cfg.ExperimentConfig:
  """Image classification on imagenet with resnet."""
  train_batch_size = 4096
  eval_batch_size = 4096
  steps_per_epoch = IMAGENET_TRAIN_EXAMPLES // train_batch_size
  config = cfg.ExperimentConfig(
      task=ImageClassificationTask(
          model=ImageClassificationModel(
              num_classes=1001,
              input_size=[224, 224, 3],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
120
121
              backbone=backbones.Backbone(
                  type='resnet', resnet=backbones.ResNet(model_id=50)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
122
              norm_activation=common.NormActivation(
Pengchong Jin's avatar
Pengchong Jin committed
123
                  norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=False)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
          losses=Losses(l2_weight_decay=1e-4),
          train_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size),
          validation_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'valid*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=90 * steps_per_epoch,
          validation_steps=IMAGENET_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [
                          30 * steps_per_epoch, 60 * steps_per_epoch,
                          80 * steps_per_epoch
                      ],
                      'values': [
155
156
157
158
                          0.1 * train_batch_size / 256,
                          0.01 * train_batch_size / 256,
                          0.001 * train_batch_size / 256,
                          0.0001 * train_batch_size / 256,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
                      ]
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
@exp_factory.register_config_factory('resnet_rs_imagenet')
def image_classification_imagenet_resnetrs() -> cfg.ExperimentConfig:
  """Image classification on imagenet with resnet-rs."""
  train_batch_size = 4096
  eval_batch_size = 4096
  steps_per_epoch = IMAGENET_TRAIN_EXAMPLES // train_batch_size
  config = cfg.ExperimentConfig(
      task=ImageClassificationTask(
          model=ImageClassificationModel(
              num_classes=1001,
              input_size=[160, 160, 3],
              backbone=backbones.Backbone(
                  type='resnet',
                  resnet=backbones.ResNet(
                      model_id=50,
                      stem_type='v1',
                      resnetd_shortcut=True,
                      replace_stem_max_pool=True,
                      se_ratio=0.25,
                      stochastic_depth_drop_rate=0.0)),
              dropout_rate=0.25,
              norm_activation=common.NormActivation(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
200
201
202
203
                  norm_momentum=0.0,
                  norm_epsilon=1e-5,
                  use_sync_bn=False,
                  activation='swish')),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
204
205
206
207
208
          losses=Losses(l2_weight_decay=4e-5, label_smoothing=0.1),
          train_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size,
209
210
              aug_type=common.Augmentation(
                  type='randaug', randaug=common.RandAugment(magnitude=10))),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
211
212
213
214
215
216
217
218
          validation_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'valid*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
219
          train_steps=350 * steps_per_epoch,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
220
221
222
223
224
225
226
227
228
229
          validation_steps=IMAGENET_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'ema': {
Abdullah Rashwan's avatar
Abdullah Rashwan committed
230
231
                  'average_decay': 0.9999,
                  'trainable_weights_only': False,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
232
233
234
235
              },
              'learning_rate': {
                  'type': 'cosine',
                  'cosine': {
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
236
237
                      'initial_learning_rate': 1.6,
                      'decay_steps': 350 * steps_per_epoch
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])
  return config


Abdullah Rashwan's avatar
Abdullah Rashwan committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
@exp_factory.register_config_factory('revnet_imagenet')
def image_classification_imagenet_revnet() -> cfg.ExperimentConfig:
  """Returns a revnet config for image classification on imagenet."""
  train_batch_size = 4096
  eval_batch_size = 4096
  steps_per_epoch = IMAGENET_TRAIN_EXAMPLES // train_batch_size

  config = cfg.ExperimentConfig(
      task=ImageClassificationTask(
          model=ImageClassificationModel(
              num_classes=1001,
              input_size=[224, 224, 3],
              backbone=backbones.Backbone(
                  type='revnet', revnet=backbones.RevNet(model_id=56)),
              norm_activation=common.NormActivation(
Pengchong Jin's avatar
Pengchong Jin committed
270
                  norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=False),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
              add_head_batch_norm=True),
          losses=Losses(l2_weight_decay=1e-4),
          train_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size),
          validation_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'valid*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=90 * steps_per_epoch,
          validation_steps=IMAGENET_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [
                          30 * steps_per_epoch, 60 * steps_per_epoch,
                          80 * steps_per_epoch
                      ],
                      'values': [0.8, 0.08, 0.008, 0.0008]
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config
319
320
321
322
323


@exp_factory.register_config_factory('mobilenet_imagenet')
def image_classification_imagenet_mobilenet() -> cfg.ExperimentConfig:
  """Image classification on imagenet with mobilenet."""
324
325
  train_batch_size = 4096
  eval_batch_size = 4096
326
327
328
329
330
331
332
333
334
335
  steps_per_epoch = IMAGENET_TRAIN_EXAMPLES // train_batch_size
  config = cfg.ExperimentConfig(
      task=ImageClassificationTask(
          model=ImageClassificationModel(
              num_classes=1001,
              dropout_rate=0.2,
              input_size=[224, 224, 3],
              backbone=backbones.Backbone(
                  type='mobilenet',
                  mobilenet=backbones.MobileNet(
336
                      model_id='MobileNetV2', filter_size_scale=1.0)),
337
              norm_activation=common.NormActivation(
Pengchong Jin's avatar
Pengchong Jin committed
338
                  norm_momentum=0.997, norm_epsilon=1e-3, use_sync_bn=False)),
339
          losses=Losses(l2_weight_decay=1e-5, label_smoothing=0.1),
340
341
342
343
344
345
346
347
348
349
350
351
          train_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size),
          validation_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'valid*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
352
          train_steps=500 * steps_per_epoch,
353
354
355
356
357
358
          validation_steps=IMAGENET_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'rmsprop',
                  'rmsprop': {
359
                      'rho': 0.9,
360
361
362
363
364
365
366
                      'momentum': 0.9,
                      'epsilon': 0.002,
                  }
              },
              'learning_rate': {
                  'type': 'exponential',
                  'exponential': {
367
368
369
370
371
372
373
374
                      'initial_learning_rate':
                          0.008 * (train_batch_size // 128),
                      'decay_steps':
                          int(2.5 * steps_per_epoch),
                      'decay_rate':
                          0.98,
                      'staircase':
                          True
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              },
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config