export_tfhub.py 3.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A script to export the BERT core model as a TF-Hub SavedModel."""
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

from absl import app
from absl import flags
import tensorflow as tf
from typing import Text

from official.nlp import bert_modeling

FLAGS = flags.FLAGS

flags.DEFINE_string("bert_config_file", None,
                    "Bert configuration file to define core bert layers.")
flags.DEFINE_string("model_checkpoint_path", None,
                    "File path to TF model checkpoint.")
flags.DEFINE_string("export_path", None,
                    "TF-Hub SavedModel destination path.")
Hongkun Yu's avatar
Hongkun Yu committed
36
37
flags.DEFINE_string("vocab_file", None,
                    "The vocabulary file that the BERT model was trained on.")
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65


def create_bert_model(bert_config: bert_modeling.BertConfig):
  """Creates a BERT keras core model from BERT configuration.

  Args:
    bert_config: A BertConfig` to create the core model.

  Returns:
    A keras model.
  """
  # Adds input layers just as placeholders.
  input_word_ids = tf.keras.layers.Input(
      shape=(None,), dtype=tf.int32, name="input_word_ids")
  input_mask = tf.keras.layers.Input(
      shape=(None,), dtype=tf.int32, name="input_mask")
  input_type_ids = tf.keras.layers.Input(
      shape=(None,), dtype=tf.int32, name="input_type_ids")
  return bert_modeling.get_bert_model(
      input_word_ids,
      input_mask,
      input_type_ids,
      config=bert_config,
      name="bert_model",
      float_type=tf.float32)


def export_bert_tfhub(bert_config: bert_modeling.BertConfig,
Hongkun Yu's avatar
Hongkun Yu committed
66
67
                      model_checkpoint_path: Text, hub_destination: Text,
                      vocab_file: Text):
68
69
70
71
  """Restores a tf.keras.Model and saves for TF-Hub."""
  core_model = create_bert_model(bert_config)
  checkpoint = tf.train.Checkpoint(model=core_model)
  checkpoint.restore(model_checkpoint_path).assert_consumed()
Hongkun Yu's avatar
Hongkun Yu committed
72
73
  core_model.vocab_file = tf.saved_model.Asset(vocab_file)
  core_model.do_lower_case = tf.Variable("uncased" in vocab_file)
74
75
76
77
78
79
80
81
  core_model.save(hub_destination, include_optimizer=False, save_format="tf")


def main(_):
  assert tf.version.VERSION.startswith('2.')

  bert_config = bert_modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
  export_bert_tfhub(bert_config, FLAGS.model_checkpoint_path,
Hongkun Yu's avatar
Hongkun Yu committed
82
                    FLAGS.export_path, FLAGS.vocab_file)
83
84
85
86


if __name__ == "__main__":
  app.run(main)