data_async_generation.py 21.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Asynchronously generate TFRecords files for NCF."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import atexit
import contextlib
import datetime
import gc
import multiprocessing
import json
import os
import pickle
import signal
import sys
import tempfile
import time
import timeit
import traceback
import typing

import numpy as np
import tensorflow as tf

from absl import app as absl_app
from absl import flags

from official.datasets import movielens
from official.recommendation import constants as rconst
from official.recommendation import stat_utils
Shawn Wang's avatar
Shawn Wang committed
46
from official.recommendation import popen_helper
47
48


49
50
51
_log_file = None


52
53
def log_msg(msg):
  """Include timestamp info when logging messages to a file."""
54
  if flags.FLAGS.use_tf_logging:
55
56
57
    tf.logging.info(msg)
    return

58
59
  if flags.FLAGS.redirect_logs:
    timestamp = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
60
    print("[{}] {}".format(timestamp, msg), file=_log_file)
61
  else:
62
63
64
    print(msg, file=_log_file)
  if _log_file:
    _log_file.flush()
65
66
67
68
69
70


def get_cycle_folder_name(i):
  return "cycle_{}".format(str(i).zfill(5))


71
72
def _process_shard(args):
  # type: ((str, int, int, int)) -> (np.ndarray, np.ndarray, np.ndarray)
73
74
75
76
77
78
79
80
  """Read a shard of training data and return training vectors.

  Args:
    shard_path: The filepath of the positive instance training shard.
    num_items: The cardinality of the item set.
    num_neg: The number of negatives to generate per positive example.
    seed: Random seed to be used when generating negatives.
  """
81
82
  shard_path, num_items, num_neg, seed = args
  np.random.seed(seed)
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

  # The choice to store the training shards in files rather than in memory
  # is motivated by the fact that multiprocessing serializes arguments,
  # transmits them to map workers, and then deserializes them. By storing the
  # training shards in files, the serialization work only needs to be done once.
  #
  # A similar effect could be achieved by simply holding pickled bytes in
  # memory, however the processing is not I/O bound and is therefore
  # unnecessary.
  with tf.gfile.Open(shard_path, "rb") as f:
    shard = pickle.load(f)

  users = shard[movielens.USER_COLUMN]
  items = shard[movielens.ITEM_COLUMN]

  delta = users[1:] - users[:-1]
  boundaries = ([0] + (np.argwhere(delta)[:, 0] + 1).tolist() +
                [users.shape[0]])

  user_blocks = []
  item_blocks = []
  label_blocks = []
  for i in range(len(boundaries) - 1):
    assert len(set(users[boundaries[i]:boundaries[i+1]])) == 1
    positive_items = items[boundaries[i]:boundaries[i+1]]
    positive_set = set(positive_items)
    if positive_items.shape[0] != len(positive_set):
      raise ValueError("Duplicate entries detected.")
    n_pos = len(positive_set)

    negatives = stat_utils.sample_with_exclusion(
        num_items, positive_set, n_pos * num_neg)

    user_blocks.append(users[boundaries[i]] * np.ones(
        (n_pos * (1 + num_neg),), dtype=np.int32))
    item_blocks.append(
        np.array(list(positive_set) + negatives, dtype=np.uint16))
    labels_for_user = np.zeros((n_pos * (1 + num_neg),), dtype=np.int8)
    labels_for_user[:n_pos] = 1
    label_blocks.append(labels_for_user)

  users_out = np.concatenate(user_blocks)
  items_out = np.concatenate(item_blocks)
  labels_out = np.concatenate(label_blocks)

  assert users_out.shape == items_out.shape == labels_out.shape
  return users_out, items_out, labels_out


132
def _construct_record(users, items, labels=None, dupe_mask=None):
133
134
135
136
137
138
139
140
141
142
143
  """Convert NumPy arrays into a TFRecords entry."""
  feature_dict = {
      movielens.USER_COLUMN: tf.train.Feature(
          bytes_list=tf.train.BytesList(value=[memoryview(users).tobytes()])),
      movielens.ITEM_COLUMN: tf.train.Feature(
          bytes_list=tf.train.BytesList(value=[memoryview(items).tobytes()])),
  }
  if labels is not None:
    feature_dict["labels"] = tf.train.Feature(
        bytes_list=tf.train.BytesList(value=[memoryview(labels).tobytes()]))

144
145
146
147
  if dupe_mask is not None:
    feature_dict[rconst.DUPLICATE_MASK] = tf.train.Feature(
        bytes_list=tf.train.BytesList(value=[memoryview(dupe_mask).tobytes()]))

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
  return tf.train.Example(
      features=tf.train.Features(feature=feature_dict)).SerializeToString()


def sigint_handler(signal, frame):
  log_msg("Shutting down worker.")


def init_worker():
  signal.signal(signal.SIGINT, sigint_handler)


def _construct_training_records(
    train_cycle,          # type: int
    num_workers,          # type: int
    cache_paths,          # type: rconst.Paths
    num_readers,          # type: int
    num_neg,              # type: int
    num_train_positives,  # type: int
    num_items,            # type: int
    epochs_per_cycle,     # type: int
    train_batch_size,     # type: int
    training_shards,      # type: typing.List[str]
    spillover,            # type: bool
172
173
    carryover=None,       # type: typing.Union[typing.List[np.ndarray], None]
    deterministic=False   # type: bool
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    ):
  """Generate false negatives and write TFRecords files.

  Args:
    train_cycle: Integer of which cycle the generated data is for.
    num_workers: Number of multiprocessing workers to use for negative
      generation.
    cache_paths: Paths object with information of where to write files.
    num_readers: The number of reader datasets in the train input_fn.
    num_neg: The number of false negatives per positive example.
    num_train_positives: The number of positive examples. This value is used
      to pre-allocate arrays while the imap is still running. (NumPy does not
      allow dynamic arrays.)
    num_items: The cardinality of the item set.
    epochs_per_cycle: The number of epochs worth of data to construct.
    train_batch_size: The expected batch size used during training. This is used
      to properly batch data when writing TFRecords.
    training_shards: The picked positive examples from which to generate
      negatives.
    spillover: If the final batch is incomplete, push it to the next
      cycle (True) or include a partial batch (False).
    carryover: The data points to be spilled over to the next cycle.
  """

  st = timeit.default_timer()
  num_workers = min([num_workers, len(training_shards) * epochs_per_cycle])
  carryover = carryover or [
      np.zeros((0,), dtype=np.int32),
      np.zeros((0,), dtype=np.uint16),
      np.zeros((0,), dtype=np.int8),
  ]
  num_carryover = carryover[0].shape[0]
  num_pts = num_carryover + num_train_positives * (1 + num_neg)

208
209
210
211
212
213
  # We choose a different random seed for each process, so that the processes
  # will not all choose the same random numbers.
  process_seeds = [np.random.randint(2**32)
                   for _ in training_shards * epochs_per_cycle]
  map_args = [(shard, num_items, num_neg, process_seeds[i])
              for i, shard in enumerate(training_shards * epochs_per_cycle)]
214

215
  with popen_helper.get_pool(num_workers, init_worker) as pool:
216
217
    map_fn = pool.imap if deterministic else pool.imap_unordered  # pylint: disable=no-member
    data_generator = map_fn(_process_shard, map_args)
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    data = [
        np.zeros(shape=(num_pts,), dtype=np.int32) - 1,
        np.zeros(shape=(num_pts,), dtype=np.uint16),
        np.zeros(shape=(num_pts,), dtype=np.int8),
    ]

    # The carryover data is always first.
    for i in range(3):
      data[i][:num_carryover] = carryover[i]
    index_destinations = np.random.permutation(
        num_train_positives * (1 + num_neg)) + num_carryover
    start_ind = 0
    for data_segment in data_generator:
      n_in_segment = data_segment[0].shape[0]
      dest = index_destinations[start_ind:start_ind + n_in_segment]
      start_ind += n_in_segment
      for i in range(3):
        data[i][dest] = data_segment[i]

  # Check that no points were dropped.
  assert (num_pts - num_carryover) == start_ind
  assert not np.sum(data[0] == -1)

  record_dir = os.path.join(cache_paths.train_epoch_dir,
                            get_cycle_folder_name(train_cycle))
  tf.gfile.MakeDirs(record_dir)

  batches_per_file = np.ceil(num_pts / train_batch_size / num_readers)
  current_file_id = -1
  current_batch_id = -1
  batches_by_file = [[] for _ in range(num_readers)]

  output_carryover = [
      np.zeros(shape=(0,), dtype=np.int32),
      np.zeros(shape=(0,), dtype=np.uint16),
      np.zeros(shape=(0,), dtype=np.int8),
  ]

  while True:
    current_batch_id += 1
    if (current_batch_id % batches_per_file) == 0:
      current_file_id += 1
    end_ind = (current_batch_id + 1) * train_batch_size
    if end_ind > num_pts:
      if spillover:
        output_carryover = [data[i][current_batch_id*train_batch_size:num_pts]
                            for i in range(3)]
        break
      else:
        batches_by_file[current_file_id].append(current_batch_id)
        break
    batches_by_file[current_file_id].append(current_batch_id)

  batch_count = 0
  for i in range(num_readers):
    fpath = os.path.join(record_dir, rconst.TRAIN_RECORD_TEMPLATE.format(i))
    log_msg("Writing {}".format(fpath))
    with tf.python_io.TFRecordWriter(fpath) as writer:
      for j in batches_by_file[i]:
        start_ind = j * train_batch_size
        end_ind = start_ind + train_batch_size
        batch_bytes = _construct_record(
            users=data[0][start_ind:end_ind],
            items=data[1][start_ind:end_ind],
            labels=data[2][start_ind:end_ind],
        )

        writer.write(batch_bytes)
        batch_count += 1


  if spillover:
    written_pts = output_carryover[0].shape[0] + batch_count * train_batch_size
    if num_pts != written_pts:
      raise ValueError("Error detected: point counts do not match: {} vs. {}"
                       .format(num_pts, written_pts))

295
296
297
298
299
  # We write to a temp file then atomically rename it to the final file, because
  # writing directly to the final file can cause the main process to read a
  # partially written JSON file.
  ready_file_temp = os.path.join(record_dir, rconst.READY_FILE_TEMP)
  with tf.gfile.Open(ready_file_temp, "w") as f:
300
301
302
303
    json.dump({
        "batch_size": train_batch_size,
        "batch_count": batch_count,
    }, f)
304
305
  ready_file = os.path.join(record_dir, rconst.READY_FILE)
  tf.gfile.Rename(ready_file_temp, ready_file)
306
307
308
309
310
311
312
313
314
315

  log_msg("Cycle {} complete. Total time: {:.1f} seconds"
          .format(train_cycle, timeit.default_timer() - st))

  return output_carryover


def _construct_eval_record(cache_paths, eval_batch_size):
  """Convert Eval data to a single TFRecords file."""

316
317
318
  # Later logic assumes that all items for a given user are in the same batch.
  assert not eval_batch_size % (rconst.NUM_EVAL_NEGATIVES + 1)

319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
  log_msg("Beginning construction of eval TFRecords file.")
  raw_fpath = cache_paths.eval_raw_file
  intermediate_fpath = cache_paths.eval_record_template_temp
  dest_fpath = cache_paths.eval_record_template.format(eval_batch_size)
  with tf.gfile.Open(raw_fpath, "rb") as f:
    eval_data = pickle.load(f)

  users = eval_data[0][movielens.USER_COLUMN]
  items = eval_data[0][movielens.ITEM_COLUMN]
  assert users.shape == items.shape
  # eval_data[1] is the labels, but during evaluation they are infered as they
  # have a set structure. They are included the the data artifact for debug
  # purposes.

  # This packaging assumes that the caller knows to drop the padded values.
  n_pts = users.shape[0]
  n_pad = eval_batch_size - (n_pts % eval_batch_size)
  assert not (n_pts + n_pad) % eval_batch_size

  users = np.concatenate([users, np.zeros(shape=(n_pad,), dtype=np.int32)])\
    .reshape((-1, eval_batch_size))
  items = np.concatenate([items, np.zeros(shape=(n_pad,), dtype=np.uint16)])\
    .reshape((-1, eval_batch_size))

  num_batches = users.shape[0]
  with tf.python_io.TFRecordWriter(intermediate_fpath) as writer:
    for i in range(num_batches):
346
347
348
349
350
351
      batch_users = users[i, :]
      batch_items = items[i, :]
      dupe_mask = stat_utils.mask_duplicates(
          batch_items.reshape(-1, rconst.NUM_EVAL_NEGATIVES + 1),
          axis=1).flatten().astype(np.int8)

352
      batch_bytes = _construct_record(
353
354
355
          users=batch_users,
          items=batch_items,
          dupe_mask=dupe_mask
356
357
      )
      writer.write(batch_bytes)
358
  tf.gfile.Rename(intermediate_fpath, dest_fpath)
359
360
361
  log_msg("Eval TFRecords file successfully constructed.")


362
363
364
365
366
367
368
369
370
371
372
373
374
def _generation_loop(num_workers,           # type: int
                     cache_paths,           # type: rconst.Paths
                     num_readers,           # type: int
                     num_neg,               # type: int
                     num_train_positives,   # type: int
                     num_items,             # type: int
                     spillover,             # type: bool
                     epochs_per_cycle,      # type: int
                     train_batch_size,      # type: int
                     eval_batch_size,       # type: int
                     deterministic          # type: bool
                    ):
  # type: (...) -> None
375
376
377
378
379
  """Primary run loop for data file generation."""

  log_msg("Signaling that I am alive.")
  with tf.gfile.Open(cache_paths.subproc_alive, "w") as f:
    f.write("Generation subproc has started.")
380
381
382
383
384
385
386

  @atexit.register
  def remove_alive_file():
    try:
      tf.gfile.Remove(cache_paths.subproc_alive)
    except tf.errors.NotFoundError:
      return  # Main thread has already deleted the entire cache dir.
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

  log_msg("Entering generation loop.")
  tf.gfile.MakeDirs(cache_paths.train_epoch_dir)

  training_shards = [os.path.join(cache_paths.train_shard_subdir, i) for i in
                     tf.gfile.ListDirectory(cache_paths.train_shard_subdir)]

  # Training blocks on the creation of the first epoch, so the num_workers
  # limit is not respected for this invocation
  train_cycle = 0
  carryover = _construct_training_records(
      train_cycle=train_cycle, num_workers=multiprocessing.cpu_count(),
      cache_paths=cache_paths, num_readers=num_readers, num_neg=num_neg,
      num_train_positives=num_train_positives, num_items=num_items,
      epochs_per_cycle=epochs_per_cycle, train_batch_size=train_batch_size,
402
403
      training_shards=training_shards, spillover=spillover, carryover=None,
      deterministic=deterministic)
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

  _construct_eval_record(cache_paths=cache_paths,
                         eval_batch_size=eval_batch_size)

  wait_count = 0
  start_time = time.time()
  while True:
    ready_epochs = tf.gfile.ListDirectory(cache_paths.train_epoch_dir)
    if len(ready_epochs) >= rconst.CYCLES_TO_BUFFER:
      wait_count += 1
      sleep_time = max([0, wait_count * 5 - (time.time() - start_time)])
      time.sleep(sleep_time)

      if (wait_count % 10) == 0:
        log_msg("Waited {} times for data to be consumed."
                .format(wait_count))

      if time.time() - start_time > rconst.TIMEOUT_SECONDS:
        log_msg("Waited more than {} seconds. Concluding that this "
                "process is orphaned and exiting gracefully."
                .format(rconst.TIMEOUT_SECONDS))
        sys.exit()

      continue

    train_cycle += 1
    carryover = _construct_training_records(
        train_cycle=train_cycle, num_workers=num_workers,
        cache_paths=cache_paths, num_readers=num_readers, num_neg=num_neg,
        num_train_positives=num_train_positives, num_items=num_items,
        epochs_per_cycle=epochs_per_cycle, train_batch_size=train_batch_size,
        training_shards=training_shards, spillover=spillover,
436
        carryover=carryover, deterministic=deterministic)
437
438
439
440
441
442

    wait_count = 0
    start_time = time.time()
    gc.collect()


443
def _parse_flagfile(flagfile):
444
  """Fill flags with flagfile written by the main process."""
445
446
  tf.logging.info("Waiting for flagfile to appear at {}..."
                  .format(flagfile))
447
  start_time = time.time()
448
  while not tf.gfile.Exists(flagfile):
449
450
451
452
453
    if time.time() - start_time > rconst.TIMEOUT_SECONDS:
      log_msg("Waited more than {} seconds. Concluding that this "
              "process is orphaned and exiting gracefully."
              .format(rconst.TIMEOUT_SECONDS))
      sys.exit()
454
    time.sleep(1)
455
  tf.logging.info("flagfile found.")
456
457
458
459
460
461
462
463

  # `flags` module opens `flagfile` with `open`, which does not work on
  # google cloud storage etc.
  _, flagfile_temp = tempfile.mkstemp()
  tf.gfile.Copy(flagfile, flagfile_temp, overwrite=True)

  flags.FLAGS([__file__, "--flagfile", flagfile_temp])
  tf.gfile.Remove(flagfile_temp)
464
465


466
def main(_):
467
  global _log_file
468
469
470
  cache_paths = rconst.Paths(
      data_dir=flags.FLAGS.data_dir, cache_id=flags.FLAGS.cache_id)

471
472
473
474
475
  flagfile = os.path.join(cache_paths.cache_root, rconst.FLAGFILE)
  _parse_flagfile(flagfile)

  redirect_logs = flags.FLAGS.redirect_logs

476
  log_file_name = "data_gen_proc_{}.log".format(cache_paths.cache_id)
477
478
  log_path = os.path.join(cache_paths.data_dir, log_file_name)
  if log_path.startswith("gs://") and redirect_logs:
479
480
    fallback_log_file = os.path.join(tempfile.gettempdir(), log_file_name)
    print("Unable to log to {}. Falling back to {}"
481
482
          .format(log_path, fallback_log_file))
    log_path = fallback_log_file
483
484
485

  # This server is generally run in a subprocess.
  if redirect_logs:
486
487
488
    print("Redirecting output of data_async_generation.py process to {}"
          .format(log_path))
    _log_file = open(log_path, "wt")  # Note: not tf.gfile.Open().
489
  try:
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
    log_msg("sys.argv: {}".format(" ".join(sys.argv)))

    if flags.FLAGS.seed is not None:
      np.random.seed(flags.FLAGS.seed)

    _generation_loop(
        num_workers=flags.FLAGS.num_workers,
        cache_paths=cache_paths,
        num_readers=flags.FLAGS.num_readers,
        num_neg=flags.FLAGS.num_neg,
        num_train_positives=flags.FLAGS.num_train_positives,
        num_items=flags.FLAGS.num_items,
        spillover=flags.FLAGS.spillover,
        epochs_per_cycle=flags.FLAGS.epochs_per_cycle,
        train_batch_size=flags.FLAGS.train_batch_size,
        eval_batch_size=flags.FLAGS.eval_batch_size,
506
        deterministic=flags.FLAGS.seed is not None,
507
508
509
510
511
512
    )
  except KeyboardInterrupt:
    log_msg("KeyboardInterrupt registered.")
  except:
    traceback.print_exc(file=_log_file)
    raise
513
514
515
516
517
  finally:
    log_msg("Shutting down generation subprocess.")
    sys.stdout.flush()
    sys.stderr.flush()
    if redirect_logs:
518
      _log_file.close()
519
520
521


def define_flags():
522
  """Construct flags for the server."""
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
  flags.DEFINE_integer(name="num_workers", default=multiprocessing.cpu_count(),
                       help="Size of the negative generation worker pool.")
  flags.DEFINE_string(name="data_dir", default=None,
                      help="The data root. (used to construct cache paths.)")
  flags.DEFINE_string(name="cache_id", default=None,
                      help="The cache_id generated in the main process.")
  flags.DEFINE_integer(name="num_readers", default=4,
                       help="Number of reader datasets in training. This sets"
                            "how the epoch files are sharded.")
  flags.DEFINE_integer(name="num_neg", default=None,
                       help="The Number of negative instances to pair with a "
                            "positive instance.")
  flags.DEFINE_integer(name="num_train_positives", default=None,
                       help="The number of positive training examples.")
  flags.DEFINE_integer(name="num_items", default=None,
                       help="Number of items from which to select negatives.")
  flags.DEFINE_integer(name="epochs_per_cycle", default=1,
                       help="The number of epochs of training data to produce"
                            "at a time.")
  flags.DEFINE_integer(name="train_batch_size", default=None,
                       help="The batch size with which training TFRecords will "
                            "be chunked.")
  flags.DEFINE_integer(name="eval_batch_size", default=None,
                       help="The batch size with which evaluation TFRecords "
                            "will be chunked.")
  flags.DEFINE_boolean(
      name="spillover", default=True,
      help="If a complete batch cannot be provided, return an empty batch and "
           "start the next epoch from a non-empty buffer. This guarantees "
           "fixed batch sizes.")
  flags.DEFINE_boolean(name="redirect_logs", default=False,
                       help="Catch logs and write them to a file. "
                            "(Useful if this is run as a subprocess)")
556
557
  flags.DEFINE_boolean(name="use_tf_logging", default=False,
                       help="Use tf.logging instead of log file.")
558
559
560
561
  flags.DEFINE_integer(name="seed", default=None,
                       help="NumPy random seed to set at startup. If not "
                            "specified, a seed will not be set.")

562
  flags.mark_flags_as_required(["data_dir", "cache_id"])
563
564
565
566

if __name__ == "__main__":
  define_flags()
  absl_app.run(main)