model_tpu_main.py 6.89 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Creates and runs `Estimator` for object detection model on TPUs.

This uses the TPUEstimator API to define and run a model in TRAIN/EVAL modes.
"""
# pylint: enable=line-too-long

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
from absl import flags
import tensorflow as tf

from tensorflow.contrib.tpu.python.tpu import tpu_config
from tensorflow.contrib.training.python.training import evaluation

from object_detection import model_hparams
from object_detection import model_lib

tf.flags.DEFINE_bool('use_tpu', True, 'Use TPUs rather than plain CPUs')

# Cloud TPU Cluster Resolvers
flags.DEFINE_string(
    'gcp_project',
    default=None,
    help='Project name for the Cloud TPU-enabled project. If not specified, we '
    'will attempt to automatically detect the GCE project from metadata.')
flags.DEFINE_string(
    'tpu_zone',
    default=None,
    help='GCE zone where the Cloud TPU is located in. If not specified, we '
    'will attempt to automatically detect the GCE project from metadata.')
flags.DEFINE_string(
    'tpu_name',
    default=None,
    help='Name of the Cloud TPU for Cluster Resolvers. You must specify either '
    'this flag or --master.')

flags.DEFINE_string(
    'master',
    default=None,
    help='GRPC URL of the master (e.g. grpc://ip.address.of.tpu:8470). You '
    'must specify either this flag or --tpu_name.')

flags.DEFINE_integer('num_shards', 8, 'Number of shards (TPU cores).')
flags.DEFINE_integer('iterations_per_loop', 100,
                     'Number of iterations per TPU training loop.')
# For mode=train_and_eval, evaluation occurs after training is finished.
# Note: independently of steps_per_checkpoint, estimator will save the most
# recent checkpoint every 10 minutes by default for train_and_eval
flags.DEFINE_string('mode', 'train_and_eval',
                    'Mode to run: train, eval, train_and_eval')
flags.DEFINE_integer('train_batch_size', 32 * 8, 'Batch size for training.')

# For EVAL.
flags.DEFINE_integer('min_eval_interval_secs', 180,
                     'Minimum seconds between evaluations.')
flags.DEFINE_integer(
    'eval_timeout_secs', None,
    'Maximum seconds between checkpoints before evaluation terminates.')
flags.DEFINE_string(
    'hparams_overrides', None, 'Comma-separated list of '
    'hyperparameters to override defaults.')
flags.DEFINE_boolean('eval_training_data', False,
                     'If training data should be evaluated for this job.')
flags.DEFINE_string(
    'model_dir', None, 'Path to output model directory '
    'where event and checkpoint files will be written.')
flags.DEFINE_string('pipeline_config_path', None, 'Path to pipeline config '
                    'file.')
flags.DEFINE_integer('num_train_steps', None, 'Number of train steps.')
flags.DEFINE_integer('num_eval_steps', None, 'Number of train steps.')

FLAGS = tf.flags.FLAGS


def main(unused_argv):
  flags.mark_flag_as_required('model_dir')
  flags.mark_flag_as_required('pipeline_config_path')

  if FLAGS.master is None and FLAGS.tpu_name is None:
    raise RuntimeError('You must specify either --master or --tpu_name.')

  if FLAGS.master is not None:
    if FLAGS.tpu_name is not None:
      tf.logging.warn('Both --master and --tpu_name are set. Ignoring '
                      '--tpu_name and using --master.')
    tpu_grpc_url = FLAGS.master
  else:
    tpu_cluster_resolver = (
        tf.contrib.cluster_resolver.python.training.TPUClusterResolver(
            tpu_names=[FLAGS.tpu_name],
            zone=FLAGS.tpu_zone,
            project=FLAGS.gcp_project))
    tpu_grpc_url = tpu_cluster_resolver.get_master()

  config = tpu_config.RunConfig(
      master=tpu_grpc_url,
      evaluation_master=tpu_grpc_url,
      model_dir=FLAGS.model_dir,
      tpu_config=tpu_config.TPUConfig(
          iterations_per_loop=FLAGS.iterations_per_loop,
          num_shards=FLAGS.num_shards))

  train_and_eval_dict = model_lib.create_estimator_and_inputs(
      run_config=config,
      hparams=model_hparams.create_hparams(FLAGS.hparams_overrides),
      pipeline_config_path=FLAGS.pipeline_config_path,
      train_steps=FLAGS.num_train_steps,
      eval_steps=FLAGS.num_eval_steps,
      use_tpu_estimator=True,
      use_tpu=FLAGS.use_tpu,
      num_shards=FLAGS.num_shards,
      batch_size=FLAGS.train_batch_size)
  estimator = train_and_eval_dict['estimator']
  train_input_fn = train_and_eval_dict['train_input_fn']
  eval_input_fn = train_and_eval_dict['eval_input_fn']
  train_steps = train_and_eval_dict['train_steps']
  eval_steps = train_and_eval_dict['eval_steps']

  if FLAGS.mode in ['train', 'train_and_eval']:
    estimator.train(input_fn=train_input_fn, max_steps=train_steps)

  if FLAGS.mode == 'train_and_eval':
    # Eval one time.
    eval_results = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps)
    tf.logging.info('Eval results: %s' % eval_results)

  # Continuously evaluating.
  if FLAGS.mode == 'eval':
    def terminate_eval():
      tf.logging.info('Terminating eval after %d seconds of no checkpoints' %
                      FLAGS.eval_timeout_secs)
      return True

    # Run evaluation when there's a new checkpoint.
    for ckpt in evaluation.checkpoints_iterator(
        FLAGS.model_dir,
        min_interval_secs=FLAGS.min_eval_interval_secs,
        timeout=FLAGS.eval_timeout_secs,
        timeout_fn=terminate_eval):

      tf.logging.info('Starting to evaluate.')
      if FLAGS.eval_training_data:
        name = 'training_data'
        input_fn = train_input_fn
      else:
        name = 'validation_data'
        input_fn = eval_input_fn
      try:
        eval_results = estimator.evaluate(
            input_fn=input_fn,
            steps=eval_steps,
            checkpoint_path=ckpt,
            name=name)
        tf.logging.info('Eval results: %s' % eval_results)

        # Terminate eval job when final checkpoint is reached
        current_step = int(os.path.basename(ckpt).split('-')[1])
        if current_step >= train_steps:
          tf.logging.info(
              'Evaluation finished after training step %d' % current_step)
          break

      except tf.errors.NotFoundError:
        tf.logging.info(
            'Checkpoint %s no longer exists, skipping checkpoint' % ckpt)


if __name__ == '__main__':
  tf.app.run()