backbones.py 4.66 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Backbones configurations."""
import dataclasses
Chaochao Yan's avatar
Chaochao Yan committed
17
from typing import List, Optional, Tuple
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
18
19
20
21

from official.modeling import hyperparams


Chaochao Yan's avatar
Chaochao Yan committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
@dataclasses.dataclass
class Transformer(hyperparams.Config):
  """Transformer config."""
  mlp_dim: int = 1
  num_heads: int = 1
  num_layers: int = 1
  attention_dropout_rate: float = 0.0
  dropout_rate: float = 0.1


@dataclasses.dataclass
class VisionTransformer(hyperparams.Config):
  """VisionTransformer config."""
  model_name: str = 'vit-b16'
  # pylint: disable=line-too-long
  pooler: str = 'token'  # 'token', 'gap' or 'none'. If set to 'token', an extra classification token is added to sequence.
  # pylint: enable=line-too-long
  representation_size: int = 0
  hidden_size: int = 1
  patch_size: int = 16
  transformer: Transformer = Transformer()
  init_stochastic_depth_rate: float = 0.0
  original_init: bool = True
  pos_embed_shape: Optional[Tuple[int, int]] = None


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
@dataclasses.dataclass
class ResNet(hyperparams.Config):
  """ResNet config."""
  model_id: int = 50
  depth_multiplier: float = 1.0
  stem_type: str = 'v0'
  se_ratio: float = 0.0
  stochastic_depth_drop_rate: float = 0.0
  scale_stem: bool = True
  resnetd_shortcut: bool = False
  replace_stem_max_pool: bool = False
  bn_trainable: bool = True


@dataclasses.dataclass
class DilatedResNet(hyperparams.Config):
  """DilatedResNet config."""
  model_id: int = 50
  output_stride: int = 16
  multigrid: Optional[List[int]] = None
  stem_type: str = 'v0'
  last_stage_repeats: int = 1
  se_ratio: float = 0.0
  stochastic_depth_drop_rate: float = 0.0
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
72
73
  resnetd_shortcut: bool = False
  replace_stem_max_pool: bool = False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146


@dataclasses.dataclass
class EfficientNet(hyperparams.Config):
  """EfficientNet config."""
  model_id: str = 'b0'
  se_ratio: float = 0.0
  stochastic_depth_drop_rate: float = 0.0


@dataclasses.dataclass
class MobileNet(hyperparams.Config):
  """Mobilenet config."""
  model_id: str = 'MobileNetV2'
  filter_size_scale: float = 1.0
  stochastic_depth_drop_rate: float = 0.0
  output_stride: Optional[int] = None
  output_intermediate_endpoints: bool = False


@dataclasses.dataclass
class SpineNet(hyperparams.Config):
  """SpineNet config."""
  model_id: str = '49'
  stochastic_depth_drop_rate: float = 0.0
  min_level: int = 3
  max_level: int = 7


@dataclasses.dataclass
class SpineNetMobile(hyperparams.Config):
  """SpineNet config."""
  model_id: str = '49'
  stochastic_depth_drop_rate: float = 0.0
  se_ratio: float = 0.2
  expand_ratio: int = 6
  min_level: int = 3
  max_level: int = 7
  # If use_keras_upsampling_2d is True, model uses UpSampling2D keras layer
  # instead of optimized custom TF op. It makes model be more keras style. We
  # set this flag to True when we apply QAT from model optimization toolkit
  # that requires the model should use keras layers.
  use_keras_upsampling_2d: bool = False


@dataclasses.dataclass
class RevNet(hyperparams.Config):
  """RevNet config."""
  # Specifies the depth of RevNet.
  model_id: int = 56


@dataclasses.dataclass
class MobileDet(hyperparams.Config):
  """Mobiledet config."""
  model_id: str = 'MobileDetCPU'
  filter_size_scale: float = 1.0


@dataclasses.dataclass
class Backbone(hyperparams.OneOfConfig):
  """Configuration for backbones.

  Attributes:
    type: 'str', type of backbone be used, one of the fields below.
    resnet: resnet backbone config.
    dilated_resnet: dilated resnet backbone for semantic segmentation config.
    revnet: revnet backbone config.
    efficientnet: efficientnet backbone config.
    spinenet: spinenet backbone config.
    spinenet_mobile: mobile spinenet backbone config.
    mobilenet: mobilenet backbone config.
    mobiledet: mobiledet backbone config.
Chaochao Yan's avatar
Chaochao Yan committed
147
    vit: vision transformer backbone config.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
148
149
150
151
152
153
154
155
156
157
  """
  type: Optional[str] = None
  resnet: ResNet = ResNet()
  dilated_resnet: DilatedResNet = DilatedResNet()
  revnet: RevNet = RevNet()
  efficientnet: EfficientNet = EfficientNet()
  spinenet: SpineNet = SpineNet()
  spinenet_mobile: SpineNetMobile = SpineNetMobile()
  mobilenet: MobileNet = MobileNet()
  mobiledet: MobileDet = MobileDet()
Chaochao Yan's avatar
Chaochao Yan committed
158
  vit: VisionTransformer = VisionTransformer()