hooks_helper.py 4.16 KB
Newer Older
Yanhui Liang's avatar
Yanhui Liang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Hooks helper to return a list of TensorFlow hooks for training by name.

More hooks can be added to this set. To add a new hook, 1) add the new hook to
the registry in HOOKS, 2) add a corresponding function that parses out necessary
parameters.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

from official.utils.logging import hooks

_TENSORS_TO_LOG = dict((x, x) for x in ['learning_rate',
                                        'cross_entropy',
                                        'train_accuracy'])


def get_train_hooks(name_list, **kwargs):
  """Factory for getting a list of TensorFlow hooks for training by name.

  Args:
    name_list: a list of strings to name desired hook classes. Allowed:
      LoggingTensorHook, ProfilerHook, ExamplesPerSecondHook, which are defined
      as keys in HOOKS
    kwargs: a dictionary of arguments to the hooks.

  Returns:
    list of instantiated hooks, ready to be used in a classifier.train call.

  Raises:
    ValueError: if an unrecognized name is passed.
  """

  if not name_list:
    return []

  train_hooks = []
  for name in name_list:
    hook_name = HOOKS.get(name.strip().lower())
    if hook_name is None:
      raise ValueError('Unrecognized training hook requested: {}'.format(name))
    else:
      train_hooks.append(hook_name(**kwargs))

  return train_hooks


def get_logging_tensor_hook(every_n_iter=100, **kwargs):  # pylint: disable=unused-argument
  """Function to get LoggingTensorHook.

  Args:
    every_n_iter: `int`, print the values of `tensors` once every N local
      steps taken on the current worker.
    kwargs: a dictionary of arguments to LoggingTensorHook.

  Returns:
    Returns a LoggingTensorHook with a standard set of tensors that will be
    printed to stdout.
  """
  return tf.train.LoggingTensorHook(
      tensors=_TENSORS_TO_LOG,
      every_n_iter=every_n_iter)


def get_profiler_hook(save_steps=1000, **kwargs):  # pylint: disable=unused-argument
  """Function to get ProfilerHook.

  Args:
    save_steps: `int`, print profile traces every N steps.
    kwargs: a dictionary of arguments to ProfilerHook.

  Returns:
    Returns a ProfilerHook that writes out timelines that can be loaded into
    profiling tools like chrome://tracing.
  """
  return tf.train.ProfilerHook(save_steps=save_steps)


def get_examples_per_second_hook(every_n_steps=100,
                                 batch_size=128,
99
                                 warm_steps=5,
Yanhui Liang's avatar
Yanhui Liang committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
                                 **kwargs):  # pylint: disable=unused-argument
  """Function to get ExamplesPerSecondHook.

  Args:
    every_n_steps: `int`, print current and average examples per second every
      N steps.
    batch_size: `int`, total batch size used to calculate examples/second from
      global time.
    warm_steps: skip this number of steps before logging and running average.
    kwargs: a dictionary of arguments to ExamplesPerSecondHook.

  Returns:
    Returns a ProfilerHook that writes out timelines that can be loaded into
    profiling tools like chrome://tracing.
  """
  return hooks.ExamplesPerSecondHook(every_n_steps=every_n_steps,
                                     batch_size=batch_size,
                                     warm_steps=warm_steps)


# A dictionary to map one hook name and its corresponding function
HOOKS = {
    'loggingtensorhook': get_logging_tensor_hook,
    'profilerhook': get_profiler_hook,
    'examplespersecondhook': get_examples_per_second_hook,
}