keras_imagenet_benchmark.py 36 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Keras benchmarks and accuracy tests."""
from __future__ import print_function

import os
19
import time
20
21

from absl import flags
22
import tensorflow as tf  # pylint: disable=g-bad-import-order
23

24
25
from official.benchmark import keras_benchmark
from official.vision.image_classification import resnet_imagenet_main
26

Toby Boyd's avatar
Toby Boyd committed
27
28
MIN_TOP_1_ACCURACY = 0.76
MAX_TOP_1_ACCURACY = 0.77
29

Toby Boyd's avatar
Toby Boyd committed
30
FLAGS = flags.FLAGS
31
32


Toby Boyd's avatar
Toby Boyd committed
33
34
class Resnet50KerasAccuracy(keras_benchmark.KerasBenchmark):
  """Benchmark accuracy tests for ResNet50 in Keras."""
35

36
  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
37
38
39
40
41
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
42
43
44
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
45
46
    """

47
    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]
Toby Boyd's avatar
Toby Boyd committed
48

49
    self.data_dir = os.path.join(root_data_dir, 'imagenet')
50
51
    super(Resnet50KerasAccuracy, self).__init__(
        output_dir=output_dir, flag_methods=flag_methods)
52

Toby Boyd's avatar
Toby Boyd committed
53
  def benchmark_graph_8_gpu(self):
54
55
    """Test Keras model with Keras fit/dist_strat and 8 GPUs."""
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
56
    FLAGS.num_gpus = 8
57
    FLAGS.data_dir = self.data_dir
58
    FLAGS.batch_size = 128 * 8
Toby Boyd's avatar
Toby Boyd committed
59
    FLAGS.train_epochs = 90
60
    FLAGS.epochs_between_evals = 10
61
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
62
    FLAGS.dtype = 'fp32'
63
    FLAGS.use_tensor_lr = True
64
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
65
66

  def benchmark_8_gpu(self):
67
68
    """Test Keras model with eager, dist_strat and 8 GPUs."""
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
69
    FLAGS.num_gpus = 8
70
    FLAGS.data_dir = self.data_dir
71
    FLAGS.batch_size = 128 * 8
Toby Boyd's avatar
Toby Boyd committed
72
    FLAGS.train_epochs = 90
73
    FLAGS.epochs_between_evals = 10
74
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
75
76
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
77
78
    # Add some thread tunings to improve performance.
    FLAGS.datasets_num_private_threads = 14
79
    FLAGS.use_tensor_lr = True
80
    self._run_and_report_benchmark()
81
82
83
84
85
86
87
88
89
90
91
92
    
  def benchmark_8_gpu_amp(self):
    """Test Keras model with eager, dist_strat and 8 GPUs with automatic mixed precision."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 128 * 8
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp')
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
93
    FLAGS.fp16_implementation = 'graph_rewrite'
94
95
96
97
98
    # Add some thread tunings to improve performance.
    FLAGS.datasets_num_private_threads = 14
    FLAGS.use_tensor_lr = True
    self._run_and_report_benchmark()
    
Reed's avatar
Reed committed
99
100
101
102
103
104
105
  def benchmark_8_gpu_fp16(self):
    """Test Keras model with eager, dist_strat, 8 GPUs, and fp16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 256 * 8
    FLAGS.train_epochs = 90
106
    FLAGS.epochs_between_evals = 10
Reed's avatar
Reed committed
107
108
109
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
110
111
    # Thread tuning to improve performance.
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
112
    FLAGS.use_tensor_lr = True
Reed's avatar
Reed committed
113
114
115
116
117
118
119
120
121
    self._run_and_report_benchmark()

  def benchmark_xla_8_gpu_fp16(self):
    """Test Keras model with XLA, eager, dist_strat, 8 GPUs and fp16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 256 * 8
    FLAGS.train_epochs = 90
122
    FLAGS.epochs_between_evals = 10
Reed's avatar
Reed committed
123
124
125
126
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
127
128
    # Thread tuning to improve performance.
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
129
    FLAGS.use_tensor_lr = True
Reed's avatar
Reed committed
130
131
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
  def benchmark_8_gpu_mlperf_like(self):
    """Test similar to the rules for MLPerf 0.5.

    Listed below are reasons this comparison is not to the MLSpec, but this is
    still a decent directional measurement:
      - Eval is every 4 epochs and again at the end. ~2 extra times.
      - Learning rate is not tuned to hit 75%, but we know the model is correct.
      - We measure total time and MLPerf 0.5 excluded some startup time.
      - Eval is not on the total set, need to set eval batch_size where
        8*batch_size/50K is even. 250 is a good number.
      - Not sure if we are doing any extra or too few steps due to epoch bleed.
    """
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 256 * 8
    FLAGS.train_epochs = 61
    FLAGS.epochs_between_evals = 4
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_mlperf_like')
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
154
    self._run_and_report_benchmark(top_1_min=0.736)
Toby Boyd's avatar
Toby Boyd committed
155

156
157
158
159
160
161
162
  def benchmark_xla_8_gpu_fp16_dynamic(self):
    """Test Keras model with XLA, eager, dist_strat, 8 GPUs, dynamic fp16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 256 * 8
    FLAGS.train_epochs = 90
163
    FLAGS.epochs_between_evals = 10
164
165
166
167
168
169
170
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.loss_scale = 'dynamic'
    # Thread tuning to improve performance.
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
171
    FLAGS.use_tensor_lr = True
172
    self._run_and_report_benchmark(top_1_min=0.736)
173

174
175
176
  def _run_and_report_benchmark(self,
                                top_1_min=MIN_TOP_1_ACCURACY,
                                top_1_max=MAX_TOP_1_ACCURACY):
177
    start_time_sec = time.time()
178
    stats = resnet_imagenet_main.run(flags.FLAGS)
179
180
181
    wall_time_sec = time.time() - start_time_sec

    super(Resnet50KerasAccuracy, self)._report_benchmark(
Toby Boyd's avatar
Toby Boyd committed
182
        stats,
183
        wall_time_sec,
184
185
        top_1_min=top_1_min,
        top_1_max=top_1_max,
186
        total_batch_size=FLAGS.batch_size,
Toby Boyd's avatar
Toby Boyd committed
187
        log_steps=100)
188
189
190
191

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)

Toby Boyd's avatar
Toby Boyd committed
192
193
194
195
196

class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
  """Resnet50 benchmarks."""

  def __init__(self, output_dir=None, default_flags=None):
197
    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]
Toby Boyd's avatar
Toby Boyd committed
198
199
200
201
202
203

    super(Resnet50KerasBenchmarkBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags)

204
205
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
206
    stats = resnet_imagenet_main.run(FLAGS)
207
    wall_time_sec = time.time() - start_time_sec
208
209
210
    # Number of logged step time entries that are excluded in performance
    # report. We keep results from last 100 batches in this case.
    warmup = (FLAGS.train_steps - 100) // FLAGS.log_steps
211
212
213
214
215

    super(Resnet50KerasBenchmarkBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
216
217
        log_steps=FLAGS.log_steps,
        warmup=warmup)
Toby Boyd's avatar
Toby Boyd committed
218
219

  def benchmark_1_gpu_no_dist_strat(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
220
    """Test Keras model with 1 GPU, no distribution strategy."""
Toby Boyd's avatar
Toby Boyd committed
221
222
223
224
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
225
    FLAGS.distribution_strategy = 'off'
226
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
Toby Boyd's avatar
Toby Boyd committed
227
    FLAGS.batch_size = 128
228
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
229

230
231
232
233
234
235
236
237
238
239
240
241
242
243
  def benchmark_1_gpu_no_dist_strat_tweaked(self):
    """Test with 1 GPU, no distribution strategy, and manual tuning."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.explicit_gpu_placement = True
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.set_learning_phase_to_train = False
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_tweaked')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

244
245
246
247
248
249
250
251
252
253
254
255
256
  def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly')
    FLAGS.batch_size = 64
    self._run_and_report_benchmark()

257
258
259
260
261
262
263
264
265
266
267
268
269
270
  def benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.explicit_gpu_placement = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked')
    FLAGS.batch_size = 64
    self._run_and_report_benchmark()

271
272
273
274
275
276
277
278
279
280
281
282
283
284
  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.explicit_gpu_placement = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
300
  def benchmark_graph_1_gpu_no_dist_strat(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
301
    """Test Keras model in legacy graph mode with 1 GPU, no dist strat."""
Toby Boyd's avatar
Toby Boyd committed
302
303
304
305
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
306
    FLAGS.distribution_strategy = 'off'
307
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_no_dist_strat')
308
309
    FLAGS.batch_size = 96  # BatchNorm is less efficient in legacy graph mode
                           # due to its reliance on v1 cond.
310
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
311
312

  def benchmark_1_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
313
    """Test Keras model with 1 GPU."""
Toby Boyd's avatar
Toby Boyd committed
314
315
316
317
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
318
    FLAGS.distribution_strategy = 'default'
319
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
320
    FLAGS.batch_size = 128
321
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
322

323
324
325
326
327
328
  def benchmark_1_gpu_amp(self):
    """Test Keras model with 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
329
    FLAGS.fp16_implementation = 'graph_rewrite'
330
331
332
333
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()
334

Haoyu Zhang's avatar
Haoyu Zhang committed
335
336
337
338
339
340
341
342
343
344
345
346
  def benchmark_xla_1_gpu(self):
    """Test Keras model with XLA and 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

347
348
349
350
351
352
  def benchmark_xla_1_gpu_amp(self):
    """Test Keras model with XLA and 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
353
    FLAGS.fp16_implementation = 'graph_rewrite'
354
355
356
357
358
359
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_amp')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
360
  def benchmark_1_gpu_fp16(self):
361
    """Test Keras model with 1 GPU and fp16."""
Reed's avatar
Reed committed
362
363
364
365
366
367
368
369
370
371
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

372
373
374
375
376
377
378
379
380
381
382
383
384
  def benchmark_1_gpu_fp16_dynamic(self):
    """Test Keras model with 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
385
386
387
388
389
390
391
392
393
394
395
396
397
  def benchmark_xla_1_gpu_fp16(self):
    """Test Keras model with XLA, 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

398
399
400
401
402
403
404
405
406
407
408
  def benchmark_xla_1_gpu_fp16_tweaked(self):
    """Test Keras model with XLA, 1 GPU, fp16, and manual config tuning."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
409
    FLAGS.use_tensor_lr = True
410
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
411
412
    self._run_and_report_benchmark()

413
414
415
416
417
418
419
420
421
422
423
424
425
426
  def benchmark_xla_1_gpu_fp16_dynamic(self):
    """Test Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
427
  def benchmark_graph_1_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
428
    """Test Keras model in legacy graph mode with 1 GPU."""
Toby Boyd's avatar
Toby Boyd committed
429
430
431
432
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
433
    FLAGS.distribution_strategy = 'default'
434
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
435
    FLAGS.batch_size = 128
436
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
437

Haoyu Zhang's avatar
Haoyu Zhang committed
438
439
440
441
442
443
444
445
446
447
448
449
  def benchmark_graph_xla_1_gpu(self):
    """Test Keras model in legacy graph mode with XLA and 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_1_gpu')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

450
451
452
453
454
  def benchmark_graph_1_gpu_fp16(self):
    """Test Keras model in legacy graph mode with 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
455
    FLAGS.dtype = 'fp16'
456
457
458
459
460
461
462
463
464
465
466
    FLAGS.enable_eager = False
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_fp16')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

  def benchmark_graph_xla_1_gpu_fp16(self):
    """Test Keras model in legacy graph mode with 1 GPU, fp16 and XLA."""
    self._setup()

    FLAGS.num_gpus = 1
467
    FLAGS.dtype = 'fp16'
468
469
470
471
472
473
474
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_1_gpu_fp16')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

475
  def benchmark_graph_xla_1_gpu_fp16_tweaked(self):
476
    """Test Keras model in legacy graph with 1 GPU, fp16, XLA, and tuning."""
477
478
479
480
481
482
483
484
485
486
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_1_gpu_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
487
    FLAGS.use_tensor_lr = True
488
489
490
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
491
  def benchmark_8_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
492
    """Test Keras model with 8 GPUs."""
Toby Boyd's avatar
Toby Boyd committed
493
494
495
496
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
497
    FLAGS.distribution_strategy = 'default'
498
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
499
    FLAGS.batch_size = 128 * 8  # 8 GPUs
500
    self._run_and_report_benchmark()
501

502
503
504
505
506
507
  def benchmark_8_gpu_amp(self):
    """Test Keras model with 8 GPUs with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
508
    FLAGS.fp16_implementation = 'graph_rewrite'
509
510
511
512
513
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()
    
514
  def benchmark_8_gpu_tweaked(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
515
    """Test Keras model with manual config tuning and 8 GPUs."""
516
517
518
519
520
521
522
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_tweaked')
    FLAGS.batch_size = 128 * 8  # 8 GPUs
523
    FLAGS.use_tensor_lr = True
524
    FLAGS.datasets_num_private_threads = 14
525
526
    self._run_and_report_benchmark()

Haoyu Zhang's avatar
Haoyu Zhang committed
527
528
529
530
531
532
533
534
535
  def benchmark_xla_8_gpu(self):
    """Test Keras model with XLA and 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu')
536
    FLAGS.batch_size = 128 * 8  # 8 GPUs
Haoyu Zhang's avatar
Haoyu Zhang committed
537
538
    self._run_and_report_benchmark()

539
540
541
542
543
544
  def benchmark_xla_8_gpu_amp(self):
    """Test Keras model with XLA and 8 GPUs with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
545
    FLAGS.fp16_implementation = 'graph_rewrite'
546
547
548
549
550
551
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_amp')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()
    
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
  def benchmark_xla_8_gpu_tweaked(self):
    """Test Keras model with manual config tuning, 8 GPUs, and XLA."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_tweaked')
    FLAGS.batch_size = 128 * 8
    FLAGS.use_tensor_lr = True
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 24
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
567
  def benchmark_8_gpu_fp16(self):
568
    """Test Keras model with 8 GPUs and fp16."""
Reed's avatar
Reed committed
569
570
571
    self._setup()

    FLAGS.num_gpus = 8
572
    FLAGS.dtype = 'fp16'
Reed's avatar
Reed committed
573
574
575
576
577
578
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()

579
  def benchmark_8_gpu_fp16_tweaked(self):
580
    """Test Keras model with 8 GPUs, fp16, and manual config tuning."""
581
582
583
584
585
586
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
587
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16_tweaked')
588
    FLAGS.batch_size = 256 * 8  # 8 GPUs
589
    FLAGS.use_tensor_lr = True
590
591
592
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

593
  def benchmark_8_gpu_fp16_dynamic_tweaked(self):
Toby Boyd's avatar
Toby Boyd committed
594
    """Test Keras model with 8 GPUs, fp16, dynamic loss scaling, and tuned."""
595
596
597
598
599
600
601
602
603
604
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
605
    FLAGS.use_tensor_lr = True
606
607
608
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
609
  def benchmark_xla_8_gpu_fp16(self):
610
    """Test Keras model with XLA, 8 GPUs and fp16."""
Reed's avatar
Reed committed
611
612
613
    self._setup()

    FLAGS.num_gpus = 8
614
    FLAGS.dtype = 'fp16'
Reed's avatar
Reed committed
615
616
617
618
619
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
620
621
    self._run_and_report_benchmark()

622
623
624
625
626
627
628
629
630
631
632
  def benchmark_xla_8_gpu_fp16_tweaked(self):
    """Test Keras model with manual config tuning, XLA, 8 GPUs and fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
633
    FLAGS.use_tensor_lr = True
634
635
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 48
636
637
    self._run_and_report_benchmark()

638
  def benchmark_xla_8_gpu_fp16_tweaked_delay_measure(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
639
640
641
    """Test with manual config tuning, XLA, 8 GPUs and fp16.

    Delay performance measurement for stable performance on 96 vCPU platforms.
642
643
644
645
646
647
648
649
650
651
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_tweaked_delay_measure')
652
    FLAGS.batch_size = 256 * 8
653
654
655
656
657
    FLAGS.use_tensor_lr = True
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.train_steps = 310
    self._run_and_report_benchmark()

658
659
660
661
662
663
664
665
666
667
668
669
670
  def benchmark_xla_8_gpu_fp16_dynamic_tweaked(self):
    """Test Keras model with config tuning, XLA, 8 GPUs and dynamic fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
671
    FLAGS.use_tensor_lr = True
672
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
673
    FLAGS.datasets_num_private_threads = 48
674
675
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
676
  def benchmark_graph_8_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
677
    """Test Keras model in legacy graph mode with 8 GPUs."""
Toby Boyd's avatar
Toby Boyd committed
678
679
680
681
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
682
    FLAGS.distribution_strategy = 'default'
683
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
684
    FLAGS.batch_size = 128 * 8  # 8 GPUs
685
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
686

Haoyu Zhang's avatar
Haoyu Zhang committed
687
688
689
690
691
692
693
694
695
  def benchmark_graph_xla_8_gpu(self):
    """Test Keras model in legacy graph mode with XLA and 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_8_gpu')
696
    FLAGS.batch_size = 128 * 8  # 8 GPUs
Haoyu Zhang's avatar
Haoyu Zhang committed
697
698
    self._run_and_report_benchmark()

699
700
701
702
703
704
705
706
707
708
709
710
  def benchmark_graph_8_gpu_fp16(self):
    """Test Keras model in legacy graph mode with 8 GPUs and fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()

711
712
713
714
715
716
717
718
719
720
721
722
723
  def benchmark_graph_xla_8_gpu_fp16(self):
    """Test Keras model in legacy graph mode with XLA, 8 GPUs and fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()

724
  def benchmark_graph_8_gpu_fp16_tweaked(self):
725
    """Test Keras model in legacy graph mode, tuning, 8 GPUs, and FP16."""
726
727
728
729
730
731
732
733
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu_fp16_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
734
    FLAGS.use_tensor_lr = True
735
736
737
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

738
  def benchmark_graph_xla_8_gpu_fp16_tweaked(self):
739
    """Test Keras model in legacy graph tuning, XLA_FP16, 8 GPUs and fp16."""
740
741
742
743
744
745
746
747
748
749
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_8_gpu_fp16_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
750
    FLAGS.use_tensor_lr = True
751
752
753
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

754
  def benchmark_graph_xla_8_gpu_fp16_tweaked_delay_measure(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
755
756
757
    """Test in legacy graph mode with manual config tuning, XLA, 8 GPUs, fp16.

    Delay performance measurement for stable performance on 96 vCPU platforms.
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_8_gpu_fp16_tweaked_delay_measure')
    FLAGS.batch_size = 256 * 8
    FLAGS.use_tensor_lr = True
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.train_steps = 310
    self._run_and_report_benchmark()

774
775
776
777
778
779
780
781
782
783
784
785
  def benchmark_graph_8_gpu_fp16_dynamic_tweaked(self):
    """Test graph Keras with config tuning, 8 GPUs and dynamic fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
786
    FLAGS.use_tensor_lr = True
787
788
789
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

790
791
792
793
794
795
796
797
798
799
800
801
  def benchmark_graph_xla_8_gpu_fp16_dynamic_tweaked(self):
    """Test graph Keras with config tuning, XLA, 8 GPUs and dynamic fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
802
    FLAGS.use_tensor_lr = True
803
804
805
806
    FLAGS.loss_scale = 'dynamic'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
807
808
809
810
811
812
  def fill_report_object(self, stats):
    super(Resnet50KerasBenchmarkBase, self).fill_report_object(
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

Toby Boyd's avatar
Toby Boyd committed
813
814
815
816

class Resnet50KerasBenchmarkSynth(Resnet50KerasBenchmarkBase):
  """Resnet50 synthetic benchmark tests."""

817
  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
Toby Boyd's avatar
Toby Boyd committed
818
819
    def_flags = {}
    def_flags['skip_eval'] = True
820
    def_flags['report_accuracy_metrics'] = False
Toby Boyd's avatar
Toby Boyd committed
821
822
823
824
    def_flags['use_synthetic_data'] = True
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

825
826
    super(Resnet50KerasBenchmarkSynth, self).__init__(
        output_dir=output_dir, default_flags=def_flags)
Toby Boyd's avatar
Toby Boyd committed
827
828
829
830
831


class Resnet50KerasBenchmarkReal(Resnet50KerasBenchmarkBase):
  """Resnet50 real data benchmark tests."""

832
  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
Toby Boyd's avatar
Toby Boyd committed
833
834
    def_flags = {}
    def_flags['skip_eval'] = True
835
    def_flags['report_accuracy_metrics'] = False
836
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
Toby Boyd's avatar
Toby Boyd committed
837
838
839
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

840
841
    super(Resnet50KerasBenchmarkReal, self).__init__(
        output_dir=output_dir, default_flags=def_flags)
842
843


844
class TrivialKerasBenchmarkReal(keras_benchmark.KerasBenchmark):
845
846
847
  """Trivial model with real data benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
848
    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]
Toby Boyd's avatar
Toby Boyd committed
849

850
    def_flags = {}
851
    def_flags['use_trivial_model'] = True
852
    def_flags['skip_eval'] = True
853
    def_flags['report_accuracy_metrics'] = False
854
    def_flags['use_tensor_lr'] = True
855
856
857
858
859
860
    def_flags['dtype'] = 'fp16'
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
    def_flags['train_steps'] = 600
    def_flags['log_steps'] = 100
    def_flags['distribution_strategy'] = 'default'

861
    super(TrivialKerasBenchmarkReal, self).__init__(
862
863
864
865
866
867
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=def_flags)

  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
868
    stats = resnet_imagenet_main.run(FLAGS)
869
870
    wall_time_sec = time.time() - start_time_sec

871
    super(TrivialKerasBenchmarkReal, self)._report_benchmark(
872
873
874
875
876
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

877
878
879
880
881
882
883
  def benchmark_8_gpu_warmup(self):
    """Dummy test that runs over an epoch to warmup the machine."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_warmup')
884
    FLAGS.batch_size = 256 * 8
885
886
887
    FLAGS.train_steps = 700
    self._run_and_report_benchmark()

888
889
890
891
892
893
  def benchmark_1_gpu(self):
    """Test trivial Keras model (input pipeline) with 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
894
    FLAGS.enable_xla = True
895
896
897
898
899
900
901
902
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

  def benchmark_graph_1_gpu(self):
    """Test trivial Keras model (input pipeline) with 1 GPU."""
    self._setup()

903
    FLAGS.num_gpus = 1
904
    FLAGS.enable_eager = False
905
    FLAGS.enable_xla = True
906
907
908
909
910
911
912
913
914
915
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

  def benchmark_8_gpu(self):
    """Test trivial Keras model (input pipeline) with 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
916
    FLAGS.enable_xla = True
917
918
919
920
921
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.batch_size = 256 * 8
    self._run_and_report_benchmark()

  def benchmark_8_gpu_tweaked(self):
922
    """Test trivial Keras model with tuning and 8 GPUs."""
923
924
925
926
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
927
    FLAGS.enable_xla = True
928
929
930
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_tweaked')
    FLAGS.batch_size = 256 * 8
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
931
    FLAGS.datasets_num_private_threads = 48
932
933
934
    self._run_and_report_benchmark()

  def benchmark_graph_8_gpu(self):
935
    """Test trivial Keras model in legacy graph mode with 8 GPUs."""
936
937
938
939
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
940
    FLAGS.enable_xla = True
941
942
943
944
945
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu')
    FLAGS.batch_size = 256 * 8
    self._run_and_report_benchmark()

  def benchmark_graph_8_gpu_tweaked(self):
946
    """Test trivial Keras model in legacy graph mode with tuning and 8 GPUs."""
947
948
949
950
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
951
    FLAGS.enable_xla = True
952
953
954
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu_tweaked')
    FLAGS.batch_size = 256 * 8
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
955
    FLAGS.datasets_num_private_threads = 48
956
957
958
    self._run_and_report_benchmark()

  def fill_report_object(self, stats):
959
    super(TrivialKerasBenchmarkReal, self).fill_report_object(
960
961
962
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)
963
964


965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
class Resnet50MultiWorkerKerasBenchmark(Resnet50KerasBenchmarkBase):
  """Resnet50 distributed benchmark tests with multiple workers."""

  def __init__(self, output_dir=None, default_flags=None):
    super(Resnet50MultiWorkerKerasBenchmark, self).__init__(
        output_dir=output_dir, default_flags=default_flags)

  def _benchmark_common(self, eager, num_workers, all_reduce_alg):
    """Common to all benchmarks in this class."""
    self._setup()

    num_gpus = 8
    FLAGS.num_gpus = num_gpus
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = eager
    FLAGS.enable_xla = False
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.use_tensor_lr = True
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_8_gpu_{}_worker_fp16_{}_tweaked'.format(
            num_workers, all_reduce_alg))
    FLAGS.batch_size = 256 * num_gpus * num_workers
    FLAGS.all_reduce_alg = all_reduce_alg

    self._run_and_report_benchmark()

  def benchmark_graph_8_gpu_1_worker_fp16_ring_tweaked(self):
    """Legacy graph, 8 GPUs per worker, 1 worker, fp16, ring all-reduce."""
    self._benchmark_common(eager=False, num_workers=1, all_reduce_alg='ring')

  def benchmark_graph_8_gpu_1_worker_fp16_nccl_tweaked(self):
    """Legacy graph, 8 GPUs per worker, 1 worker, fp16, nccl all-reduce."""
    self._benchmark_common(eager=False, num_workers=1, all_reduce_alg='nccl')

  def benchmark_graph_8_gpu_2_workers_fp16_ring_tweaked(self):
    """Legacy graph, 8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=False, num_workers=2, all_reduce_alg='ring')

  def benchmark_graph_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """Legacy graph, 8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=False, num_workers=2, all_reduce_alg='nccl')

  def benchmark_graph_8_gpu_8_workers_fp16_ring_tweaked(self):
    """Legacy graph, 8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=False, num_workers=8, all_reduce_alg='ring')

  def benchmark_graph_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """Legacy graph, 8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=False, num_workers=8, all_reduce_alg='nccl')

  def benchmark_eager_8_gpu_1_worker_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 1 worker, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=1, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_1_worker_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 1 worker, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=1, all_reduce_alg='nccl')

  def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='nccl')

  def benchmark_eager_8_gpu_8_workers_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='nccl')


Ayush Dubey's avatar
Ayush Dubey committed
1041
class Resnet50MultiWorkerKerasBenchmarkSynth(Resnet50MultiWorkerKerasBenchmark):
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
  """Resnet50 multi-worker synthetic benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['report_accuracy_metrics'] = False
    def_flags['use_synthetic_data'] = True
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

    super(Resnet50MultiWorkerKerasBenchmarkSynth, self).__init__(
        output_dir=output_dir, default_flags=def_flags)


1056
1057
if __name__ == '__main__':
  tf.test.main()