question_answering_test.py 6.42 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for official.nlp.tasks.question_answering."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
17
18
import itertools
import json
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
19
import os
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
20
from absl.testing import parameterized
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
21
22
23
24
25
26
27
28
29
import tensorflow as tf

from official.nlp.bert import configs
from official.nlp.bert import export_tfhub
from official.nlp.configs import bert
from official.nlp.configs import encoders
from official.nlp.tasks import question_answering


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
30
class QuestionAnsweringTaskTest(tf.test.TestCase, parameterized.TestCase):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
31
32
33
34
35
36

  def setUp(self):
    super(QuestionAnsweringTaskTest, self).setUp()
    self._encoder_config = encoders.TransformerEncoderConfig(
        vocab_size=30522, num_layers=1)
    self._train_data_config = bert.QADataConfig(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
        input_path="dummy",
        seq_length=128,
        global_batch_size=1)

    val_data = {"version": "1.1",
                "data": [{"paragraphs": [
                    {"context": "Sky is blue.",
                     "qas": [{"question": "What is blue?", "id": "1234",
                              "answers": [{"text": "Sky", "answer_start": 0},
                                          {"text": "Sky", "answer_start": 0},
                                          {"text": "Sky", "answer_start": 0}]
                              }]}]}]}
    self._val_input_path = os.path.join(self.get_temp_dir(), "val_data.json")
    with tf.io.gfile.GFile(self._val_input_path, "w") as writer:
      writer.write(json.dumps(val_data, indent=4) + "\n")

    self._test_vocab = os.path.join(self.get_temp_dir(), "vocab.txt")
    with tf.io.gfile.GFile(self._test_vocab, "w") as writer:
      writer.write("[PAD]\n[UNK]\n[CLS]\n[SEP]\n[MASK]\nsky\nis\nblue\n")

  def _get_validation_data_config(self, version_2_with_negative=False):
    return bert.QADevDataConfig(
        input_path=self._val_input_path,
        input_preprocessed_data_path=self.get_temp_dir(),
        seq_length=128,
        global_batch_size=1,
        version_2_with_negative=version_2_with_negative,
        vocab_file=self._test_vocab,
        tokenization="WordPiece",
        do_lower_case=True)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
67
68
69
70
71

  def _run_task(self, config):
    task = question_answering.QuestionAnsweringTask(config)
    model = task.build_model()
    metrics = task.build_metrics()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
72
    task.initialize(model)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
73

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
74
75
    train_dataset = task.build_inputs(config.train_data)
    train_iterator = iter(train_dataset)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
76
    optimizer = tf.keras.optimizers.SGD(lr=0.1)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
    task.train_step(next(train_iterator), model, optimizer, metrics=metrics)

    val_dataset = task.build_inputs(config.validation_data)
    val_iterator = iter(val_dataset)
    logs = task.validation_step(next(val_iterator), model, metrics=metrics)
    logs = task.aggregate_logs(step_outputs=logs)
    metrics = task.reduce_aggregated_logs(logs)
    self.assertIn("final_f1", metrics)

  @parameterized.parameters(itertools.product(
      (False, True),
      ("WordPiece", "SentencePiece"),
  ))
  def test_task(self, version_2_with_negative, tokenization):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
    # Saves a checkpoint.
    pretrain_cfg = bert.BertPretrainerConfig(
        encoder=self._encoder_config,
        num_masked_tokens=20,
        cls_heads=[
            bert.ClsHeadConfig(
                inner_dim=10, num_classes=3, name="next_sentence")
        ])
    pretrain_model = bert.instantiate_bertpretrainer_from_cfg(pretrain_cfg)
    ckpt = tf.train.Checkpoint(
        model=pretrain_model, **pretrain_model.checkpoint_items)
    saved_path = ckpt.save(self.get_temp_dir())

    config = question_answering.QuestionAnsweringConfig(
        init_checkpoint=saved_path,
Pengchong Jin's avatar
Pengchong Jin committed
106
        model=self._encoder_config,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
107
108
109
110
        train_data=self._train_data_config,
        validation_data=self._get_validation_data_config(
            version_2_with_negative))
    self._run_task(config)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
111
112
113

  def test_task_with_fit(self):
    config = question_answering.QuestionAnsweringConfig(
Pengchong Jin's avatar
Pengchong Jin committed
114
        model=self._encoder_config,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
115
116
        train_data=self._train_data_config,
        validation_data=self._get_validation_data_config())
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    task = question_answering.QuestionAnsweringTask(config)
    model = task.build_model()
    model = task.compile_model(
        model,
        optimizer=tf.keras.optimizers.SGD(lr=0.1),
        train_step=task.train_step,
        metrics=[tf.keras.metrics.SparseCategoricalAccuracy(name="accuracy")])
    dataset = task.build_inputs(config.train_data)
    logs = model.fit(dataset, epochs=1, steps_per_epoch=2)
    self.assertIn("loss", logs.history)
    self.assertIn("start_positions_accuracy", logs.history)
    self.assertIn("end_positions_accuracy", logs.history)

  def _export_bert_tfhub(self):
    bert_config = configs.BertConfig(
        vocab_size=30522,
        hidden_size=16,
        intermediate_size=32,
        max_position_embeddings=128,
        num_attention_heads=2,
        num_hidden_layers=1)
    _, encoder = export_tfhub.create_bert_model(bert_config)
    model_checkpoint_dir = os.path.join(self.get_temp_dir(), "checkpoint")
    checkpoint = tf.train.Checkpoint(model=encoder)
    checkpoint.save(os.path.join(model_checkpoint_dir, "test"))
    model_checkpoint_path = tf.train.latest_checkpoint(model_checkpoint_dir)

    vocab_file = os.path.join(self.get_temp_dir(), "uncased_vocab.txt")
    with tf.io.gfile.GFile(vocab_file, "w") as f:
      f.write("dummy content")

    hub_destination = os.path.join(self.get_temp_dir(), "hub")
    export_tfhub.export_bert_tfhub(bert_config, model_checkpoint_path,
                                   hub_destination, vocab_file)
    return hub_destination

  def test_task_with_hub(self):
    hub_module_url = self._export_bert_tfhub()
    config = question_answering.QuestionAnsweringConfig(
        hub_module_url=hub_module_url,
Pengchong Jin's avatar
Pengchong Jin committed
157
        model=self._encoder_config,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
158
159
        train_data=self._train_data_config,
        validation_data=self._get_validation_data_config())
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
160
161
162
163
164
    self._run_task(config)


if __name__ == "__main__":
  tf.test.main()