optimization.py 7.28 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions and classes related to optimization (weight updates)."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import re

import tensorflow as tf


class WarmUp(tf.keras.optimizers.schedules.LearningRateSchedule):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
27
  """Applies a warmup schedule on a given learning rate decay schedule."""
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

  def __init__(
      self,
      initial_learning_rate,
      decay_schedule_fn,
      warmup_steps,
      power=1.0,
      name=None):
    super(WarmUp, self).__init__()
    self.initial_learning_rate = initial_learning_rate
    self.warmup_steps = warmup_steps
    self.power = power
    self.decay_schedule_fn = decay_schedule_fn
    self.name = name

  def __call__(self, step):
    with tf.name_scope(self.name or 'WarmUp') as name:
      # Implements polynomial warmup. i.e., if global_step < warmup_steps, the
      # learning rate will be `global_step/num_warmup_steps * init_lr`.
      global_step_float = tf.cast(step, tf.float32)
      warmup_steps_float = tf.cast(self.warmup_steps, tf.float32)
      warmup_percent_done = global_step_float / warmup_steps_float
      warmup_learning_rate = (
          self.initial_learning_rate *
          tf.math.pow(warmup_percent_done, self.power))
      return tf.cond(global_step_float < warmup_steps_float,
                     lambda: warmup_learning_rate,
                     lambda: self.decay_schedule_fn(step),
                     name=name)

  def get_config(self):
    return {
        'initial_learning_rate': self.initial_learning_rate,
        'decay_schedule_fn': self.decay_schedule_fn,
        'warmup_steps': self.warmup_steps,
        'power': self.power,
        'name': self.name
    }


def create_optimizer(init_lr, num_train_steps, num_warmup_steps):
  """Creates an optimizer with learning rate schedule."""
  # Implements linear decay of the learning rate.
  learning_rate_fn = tf.keras.optimizers.schedules.PolynomialDecay(
      initial_learning_rate=init_lr,
      decay_steps=num_train_steps,
      end_learning_rate=0.0)
  if num_warmup_steps:
    learning_rate_fn = WarmUp(initial_learning_rate=init_lr,
                              decay_schedule_fn=learning_rate_fn,
                              warmup_steps=num_warmup_steps)
  optimizer = AdamWeightDecay(
      learning_rate=learning_rate_fn,
      weight_decay_rate=0.01,
      beta_1=0.9,
      beta_2=0.999,
      epsilon=1e-6,
      exclude_from_weight_decay=['layer_norm', 'bias'])
  return optimizer


class AdamWeightDecay(tf.keras.optimizers.Adam):
  """Adam enables L2 weight decay and clip_by_global_norm on gradients.

  Just adding the square of the weights to the loss function is *not* the
  correct way of using L2 regularization/weight decay with Adam, since that will
  interact with the m and v parameters in strange ways.

  Instead we want ot decay the weights in a manner that doesn't interact with
  the m/v parameters. This is equivalent to adding the square of the weights to
  the loss with plain (non-momentum) SGD.
  """

  def __init__(self,
               learning_rate=0.001,
               beta_1=0.9,
               beta_2=0.999,
               epsilon=1e-7,
               amsgrad=False,
               weight_decay_rate=0.0,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
108
               include_in_weight_decay=None,
109
110
111
112
113
               exclude_from_weight_decay=None,
               name='AdamWeightDecay',
               **kwargs):
    super(AdamWeightDecay, self).__init__(
        learning_rate, beta_1, beta_2, epsilon, amsgrad, name, **kwargs)
114
    self.weight_decay_rate = weight_decay_rate
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
115
    self._include_in_weight_decay = include_in_weight_decay
116
117
118
119
120
121
122
123
124
    self._exclude_from_weight_decay = exclude_from_weight_decay

  @classmethod
  def from_config(cls, config):
    """Creates an optimizer from its config with WarmUp custom object."""
    custom_objects = {'WarmUp': WarmUp}
    return super(AdamWeightDecay, cls).from_config(
        config, custom_objects=custom_objects)

125
126
127
  def _prepare_local(self, var_device, var_dtype, apply_state):
    super(AdamWeightDecay, self)._prepare_local(var_device, var_dtype,
                                                apply_state)
Scott Zhu's avatar
Scott Zhu committed
128
    apply_state[(var_device, var_dtype)]['weight_decay_rate'] = tf.constant(
129
130
131
        self.weight_decay_rate, name='adam_weight_decay_rate')

  def _decay_weights_op(self, var, learning_rate, apply_state):
132
133
134
135
    do_decay = self._do_use_weight_decay(var.name)
    if do_decay:
      return var.assign_sub(
          learning_rate * var *
Scott Zhu's avatar
Scott Zhu committed
136
          apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'],
137
138
139
140
141
142
143
144
          use_locking=self._use_locking)
    return tf.no_op()

  def apply_gradients(self, grads_and_vars, name=None):
    grads, tvars = list(zip(*grads_and_vars))
    (grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0)
    return super(AdamWeightDecay, self).apply_gradients(zip(grads, tvars))

145
  def _get_lr(self, var_device, var_dtype, apply_state):
146
    """Retrieves the learning rate with the given state."""
147
148
    if apply_state is None:
      return self._decayed_lr_t[var_dtype], {}
149

150
151
152
153
154
    apply_state = apply_state or {}
    coefficients = apply_state.get((var_device, var_dtype))
    if coefficients is None:
      coefficients = self._fallback_apply_state(var_device, var_dtype)
      apply_state[(var_device, var_dtype)] = coefficients
155

156
157
158
159
    return coefficients['lr_t'], dict(apply_state=apply_state)

  def _resource_apply_dense(self, grad, var, apply_state=None):
    lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state)
160
161
    decay = self._decay_weights_op(var, lr_t, apply_state)
    with tf.control_dependencies([decay]):
162
      return super(AdamWeightDecay, self)._resource_apply_dense(
163
          grad, var, **kwargs)
164

165
166
  def _resource_apply_sparse(self, grad, var, indices, apply_state=None):
    lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state)
167
168
    decay = self._decay_weights_op(var, lr_t, apply_state)
    with tf.control_dependencies([decay]):
169
      return super(AdamWeightDecay, self)._resource_apply_sparse(
170
          grad, var, indices, **kwargs)
171
172
173
174

  def get_config(self):
    config = super(AdamWeightDecay, self).get_config()
    config.update({
175
        'weight_decay_rate': self.weight_decay_rate,
176
177
178
179
180
    })
    return config

  def _do_use_weight_decay(self, param_name):
    """Whether to use L2 weight decay for `param_name`."""
181
182
    if self.weight_decay_rate == 0:
      return False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
183
184
185
186
187
188

    if self._include_in_weight_decay:
      for r in self._include_in_weight_decay:
        if re.search(r, param_name) is not None:
          return True

189
190
191
192
193
    if self._exclude_from_weight_decay:
      for r in self._exclude_from_weight_decay:
        if re.search(r, param_name) is not None:
          return False
    return True