eval_util.py 23.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Common functions for repeatedly evaluating a checkpoint."""
16
17
18
19
20
21
22
import logging
import os
import time

import numpy as np
import tensorflow as tf

23
24
25
26
from object_detection.core import box_list
from object_detection.core import box_list_ops
from object_detection.core import keypoint_ops
from object_detection.core import standard_fields as fields
27
from object_detection.utils import label_map_util
28
from object_detection.utils import ops
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from object_detection.utils import visualization_utils as vis_utils

slim = tf.contrib.slim


def write_metrics(metrics, global_step, summary_dir):
  """Write metrics to a summary directory.

  Args:
    metrics: A dictionary containing metric names and values.
    global_step: Global step at which the metrics are computed.
    summary_dir: Directory to write tensorflow summaries to.
  """
  logging.info('Writing metrics to tf summary.')
  summary_writer = tf.summary.FileWriter(summary_dir)
  for key in sorted(metrics):
    summary = tf.Summary(value=[
        tf.Summary.Value(tag=key, simple_value=metrics[key]),
    ])
    summary_writer.add_summary(summary, global_step)
    logging.info('%s: %f', key, metrics[key])
  summary_writer.close()
  logging.info('Metrics written to tf summary.')


# TODO: Add tests.
def visualize_detection_results(result_dict,
                                tag,
                                global_step,
                                categories,
                                summary_dir='',
                                export_dir='',
                                agnostic_mode=False,
                                show_groundtruth=False,
                                min_score_thresh=.5,
                                max_num_predictions=20):
  """Visualizes detection results and writes visualizations to image summaries.

  This function visualizes an image with its detected bounding boxes and writes
  to image summaries which can be viewed on tensorboard.  It optionally also
  writes images to a directory. In the case of missing entry in the label map,
  unknown class name in the visualization is shown as "N/A".

  Args:
    result_dict: a dictionary holding groundtruth and detection
      data corresponding to each image being evaluated.  The following keys
      are required:
        'original_image': a numpy array representing the image with shape
          [1, height, width, 3]
        'detection_boxes': a numpy array of shape [N, 4]
        'detection_scores': a numpy array of shape [N]
        'detection_classes': a numpy array of shape [N]
      The following keys are optional:
        'groundtruth_boxes': a numpy array of shape [N, 4]
        'groundtruth_keypoints': a numpy array of shape [N, num_keypoints, 2]
      Detections are assumed to be provided in decreasing order of score and for
      display, and we assume that scores are probabilities between 0 and 1.
    tag: tensorboard tag (string) to associate with image.
    global_step: global step at which the visualization are generated.
    categories: a list of dictionaries representing all possible categories.
      Each dict in this list has the following keys:
          'id': (required) an integer id uniquely identifying this category
          'name': (required) string representing category name
            e.g., 'cat', 'dog', 'pizza'
          'supercategory': (optional) string representing the supercategory
            e.g., 'animal', 'vehicle', 'food', etc
    summary_dir: the output directory to which the image summaries are written.
    export_dir: the output directory to which images are written.  If this is
      empty (default), then images are not exported.
    agnostic_mode: boolean (default: False) controlling whether to evaluate in
      class-agnostic mode or not.
    show_groundtruth: boolean (default: False) controlling whether to show
      groundtruth boxes in addition to detected boxes
    min_score_thresh: minimum score threshold for a box to be visualized
    max_num_predictions: maximum number of detections to visualize
  Raises:
    ValueError: if result_dict does not contain the expected keys (i.e.,
      'original_image', 'detection_boxes', 'detection_scores',
      'detection_classes')
  """
  if not set([
      'original_image', 'detection_boxes', 'detection_scores',
      'detection_classes'
  ]).issubset(set(result_dict.keys())):
    raise ValueError('result_dict does not contain all expected keys.')
  if show_groundtruth and 'groundtruth_boxes' not in result_dict:
    raise ValueError('If show_groundtruth is enabled, result_dict must contain '
                     'groundtruth_boxes.')
  logging.info('Creating detection visualizations.')
  category_index = label_map_util.create_category_index(categories)

  image = np.squeeze(result_dict['original_image'], axis=0)
  detection_boxes = result_dict['detection_boxes']
  detection_scores = result_dict['detection_scores']
  detection_classes = np.int32((result_dict['detection_classes']))
  detection_keypoints = result_dict.get('detection_keypoints', None)
  detection_masks = result_dict.get('detection_masks', None)

  # Plot groundtruth underneath detections
  if show_groundtruth:
    groundtruth_boxes = result_dict['groundtruth_boxes']
    groundtruth_keypoints = result_dict.get('groundtruth_keypoints', None)
    vis_utils.visualize_boxes_and_labels_on_image_array(
        image,
        groundtruth_boxes,
        None,
        None,
        category_index,
        keypoints=groundtruth_keypoints,
        use_normalized_coordinates=False,
        max_boxes_to_draw=None)
  vis_utils.visualize_boxes_and_labels_on_image_array(
      image,
      detection_boxes,
      detection_classes,
      detection_scores,
      category_index,
      instance_masks=detection_masks,
      keypoints=detection_keypoints,
      use_normalized_coordinates=False,
      max_boxes_to_draw=max_num_predictions,
      min_score_thresh=min_score_thresh,
      agnostic_mode=agnostic_mode)

  if export_dir:
    export_path = os.path.join(export_dir, 'export-{}.png'.format(tag))
    vis_utils.save_image_array_as_png(image, export_path)

  summary = tf.Summary(value=[
158
159
160
161
162
      tf.Summary.Value(
          tag=tag,
          image=tf.Summary.Image(
              encoded_image_string=vis_utils.encode_image_array_as_png_str(
                  image)))
163
164
165
166
167
168
169
170
  ])
  summary_writer = tf.summary.FileWriter(summary_dir)
  summary_writer.add_summary(summary, global_step)
  summary_writer.close()

  logging.info('Detection visualizations written to summary with tag %s.', tag)


171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
def _run_checkpoint_once(tensor_dict,
                         evaluators=None,
                         batch_processor=None,
                         checkpoint_dirs=None,
                         variables_to_restore=None,
                         restore_fn=None,
                         num_batches=1,
                         master='',
                         save_graph=False,
                         save_graph_dir=''):
  """Evaluates metrics defined in evaluators.

  This function loads the latest checkpoint in checkpoint_dirs and evaluates
  all metrics defined in evaluators. The metrics are processed in batch by the
  batch_processor.
186
187
188
189

  Args:
    tensor_dict: a dictionary holding tensors representing a batch of detections
      and corresponding groundtruth annotations.
190
191
192
    evaluators: a list of object of type DetectionEvaluator to be used for
      evaluation. Note that the metric names produced by different evaluators
      must be unique.
193
194
195
196
197
198
199
200
201
202
203
    batch_processor: a function taking four arguments:
      1. tensor_dict: the same tensor_dict that is passed in as the first
        argument to this function.
      2. sess: a tensorflow session
      3. batch_index: an integer representing the index of the batch amongst
        all batches
      By default, batch_processor is None, which defaults to running:
        return sess.run(tensor_dict)
      To skip an image, it suffices to return an empty dictionary in place of
      result_dict.
    checkpoint_dirs: list of directories to load into an EnsembleModel. If it
204
205
      has only one directory, EnsembleModel will not be used --
        a DetectionModel
206
207
208
209
210
211
212
213
214
215
216
217
218
      will be instantiated directly. Not used if restore_fn is set.
    variables_to_restore: None, or a dictionary mapping variable names found in
      a checkpoint to model variables. The dictionary would normally be
      generated by creating a tf.train.ExponentialMovingAverage object and
      calling its variables_to_restore() method. Not used if restore_fn is set.
    restore_fn: None, or a function that takes a tf.Session object and correctly
      restores all necessary variables from the correct checkpoint file. If
      None, attempts to restore from the first directory in checkpoint_dirs.
    num_batches: the number of batches to use for evaluation.
    master: the location of the Tensorflow session.
    save_graph: whether or not the Tensorflow graph is stored as a pbtxt file.
    save_graph_dir: where to store the Tensorflow graph on disk. If save_graph
      is True this must be non-empty.
219
220
221
222

  Returns:
    global_step: the count of global steps.
    all_evaluator_metrics: A dictionary containing metric names and values.
223
224
225
226
227
228
229
230
231
232
233

  Raises:
    ValueError: if restore_fn is None and checkpoint_dirs doesn't have at least
      one element.
    ValueError: if save_graph is True and save_graph_dir is not defined.
  """
  if save_graph and not save_graph_dir:
    raise ValueError('`save_graph_dir` must be defined.')
  sess = tf.Session(master, graph=tf.get_default_graph())
  sess.run(tf.global_variables_initializer())
  sess.run(tf.local_variables_initializer())
234
  sess.run(tf.tables_initializer())
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
  if restore_fn:
    restore_fn(sess)
  else:
    if not checkpoint_dirs:
      raise ValueError('`checkpoint_dirs` must have at least one entry.')
    checkpoint_file = tf.train.latest_checkpoint(checkpoint_dirs[0])
    saver = tf.train.Saver(variables_to_restore)
    saver.restore(sess, checkpoint_file)

  if save_graph:
    tf.train.write_graph(sess.graph_def, save_graph_dir, 'eval.pbtxt')

  counters = {'skipped': 0, 'success': 0}
  with tf.contrib.slim.queues.QueueRunners(sess):
    try:
      for batch in range(int(num_batches)):
        if (batch + 1) % 100 == 0:
          logging.info('Running eval ops batch %d/%d', batch + 1, num_batches)
        if not batch_processor:
          try:
255
            result_dict = sess.run(tensor_dict)
256
257
258
259
260
261
            counters['success'] += 1
          except tf.errors.InvalidArgumentError:
            logging.info('Skipping image')
            counters['skipped'] += 1
            result_dict = {}
        else:
262
263
264
265
266
267
268
269
270
271
          result_dict = batch_processor(tensor_dict, sess, batch, counters)
        for evaluator in evaluators:
          # TODO: Use image_id tensor once we fix the input data
          # decoders to return correct image_id.
          # TODO: result_dict contains batches of images, while
          # add_single_ground_truth_image_info expects a single image. Fix
          evaluator.add_single_ground_truth_image_info(
              image_id=batch, groundtruth_dict=result_dict)
          evaluator.add_single_detected_image_info(
              image_id=batch, detections_dict=result_dict)
272
273
274
275
276
277
278
      logging.info('Running eval batches done.')
    except tf.errors.OutOfRangeError:
      logging.info('Done evaluating -- epoch limit reached')
    finally:
      # When done, ask the threads to stop.
      logging.info('# success: %d', counters['success'])
      logging.info('# skipped: %d', counters['skipped'])
279
280
281
282
283
284
285
286
      all_evaluator_metrics = {}
      for evaluator in evaluators:
        metrics = evaluator.evaluate()
        evaluator.clear()
        if any(key in all_evaluator_metrics for key in metrics):
          raise ValueError('Metric names between evaluators must not collide.')
        all_evaluator_metrics.update(metrics)
      global_step = tf.train.global_step(sess, tf.train.get_global_step())
287
  sess.close()
288
  return (global_step, all_evaluator_metrics)
289
290
291
292
293


# TODO: Add tests.
def repeated_checkpoint_run(tensor_dict,
                            summary_dir,
294
                            evaluators,
295
296
297
298
299
300
301
302
303
                            batch_processor=None,
                            checkpoint_dirs=None,
                            variables_to_restore=None,
                            restore_fn=None,
                            num_batches=1,
                            eval_interval_secs=120,
                            max_number_of_evaluations=None,
                            master='',
                            save_graph=False,
304
                            save_graph_dir=''):
305
306
307
308
309
310
311
312
313
314
315
  """Periodically evaluates desired tensors using checkpoint_dirs or restore_fn.

  This function repeatedly loads a checkpoint and evaluates a desired
  set of tensors (provided by tensor_dict) and hands the resulting numpy
  arrays to a function result_processor which can be used to further
  process/save/visualize the results.

  Args:
    tensor_dict: a dictionary holding tensors representing a batch of detections
      and corresponding groundtruth annotations.
    summary_dir: a directory to write metrics summaries.
316
317
318
    evaluators: a list of object of type DetectionEvaluator to be used for
      evaluation. Note that the metric names produced by different evaluators
      must be unique.
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
    batch_processor: a function taking three arguments:
      1. tensor_dict: the same tensor_dict that is passed in as the first
        argument to this function.
      2. sess: a tensorflow session
      3. batch_index: an integer representing the index of the batch amongst
        all batches
      By default, batch_processor is None, which defaults to running:
        return sess.run(tensor_dict)
    checkpoint_dirs: list of directories to load into a DetectionModel or an
      EnsembleModel if restore_fn isn't set. Also used to determine when to run
      next evaluation. Must have at least one element.
    variables_to_restore: None, or a dictionary mapping variable names found in
      a checkpoint to model variables. The dictionary would normally be
      generated by creating a tf.train.ExponentialMovingAverage object and
      calling its variables_to_restore() method. Not used if restore_fn is set.
    restore_fn: a function that takes a tf.Session object and correctly restores
      all necessary variables from the correct checkpoint file.
    num_batches: the number of batches to use for evaluation.
    eval_interval_secs: the number of seconds between each evaluation run.
    max_number_of_evaluations: the max number of iterations of the evaluation.
      If the value is left as None the evaluation continues indefinitely.
    master: the location of the Tensorflow session.
    save_graph: whether or not the Tensorflow graph is saved as a pbtxt file.
    save_graph_dir: where to save on disk the Tensorflow graph. If store_graph
      is True this must be non-empty.
344
345
346
347

  Returns:
    metrics: A dictionary containing metric names and values in the latest
      evaluation.
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

  Raises:
    ValueError: if max_num_of_evaluations is not None or a positive number.
    ValueError: if checkpoint_dirs doesn't have at least one element.
  """
  if max_number_of_evaluations and max_number_of_evaluations <= 0:
    raise ValueError(
        '`number_of_steps` must be either None or a positive number.')

  if not checkpoint_dirs:
    raise ValueError('`checkpoint_dirs` must have at least one entry.')

  last_evaluated_model_path = None
  number_of_evaluations = 0
  while True:
    start = time.time()
364
365
    logging.info('Starting evaluation at ' + time.strftime(
        '%Y-%m-%d-%H:%M:%S', time.gmtime()))
366
367
368
369
370
371
372
373
374
    model_path = tf.train.latest_checkpoint(checkpoint_dirs[0])
    if not model_path:
      logging.info('No model found in %s. Will try again in %d seconds',
                   checkpoint_dirs[0], eval_interval_secs)
    elif model_path == last_evaluated_model_path:
      logging.info('Found already evaluated checkpoint. Will try again in %d '
                   'seconds', eval_interval_secs)
    else:
      last_evaluated_model_path = model_path
375
376
377
378
379
380
381
382
      global_step, metrics = _run_checkpoint_once(tensor_dict, evaluators,
                                                  batch_processor,
                                                  checkpoint_dirs,
                                                  variables_to_restore,
                                                  restore_fn, num_batches,
                                                  master, save_graph,
                                                  save_graph_dir)
      write_metrics(metrics, global_step, summary_dir)
383
384
385
386
387
388
389
390
391
    number_of_evaluations += 1

    if (max_number_of_evaluations and
        number_of_evaluations >= max_number_of_evaluations):
      logging.info('Finished evaluation!')
      break
    time_to_next_eval = start + eval_interval_secs - time.time()
    if time_to_next_eval > 0:
      time.sleep(time_to_next_eval)
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

  return metrics


def result_dict_for_single_example(image,
                                   key,
                                   detections,
                                   groundtruth=None,
                                   class_agnostic=False,
                                   scale_to_absolute=False):
  """Merges all detection and groundtruth information for a single example.

  Note that evaluation tools require classes that are 1-indexed, and so this
  function performs the offset. If `class_agnostic` is True, all output classes
  have label 1.

  Args:
    image: A single 4D image tensor of shape [1, H, W, C].
    key: A single string tensor identifying the image.
    detections: A dictionary of detections, returned from
      DetectionModel.postprocess().
    groundtruth: (Optional) Dictionary of groundtruth items, with fields:
      'groundtruth_boxes': [num_boxes, 4] float32 tensor of boxes, in
        normalized coordinates.
      'groundtruth_classes': [num_boxes] int64 tensor of 1-indexed classes.
      'groundtruth_area': [num_boxes] float32 tensor of bbox area. (Optional)
      'groundtruth_is_crowd': [num_boxes] int64 tensor. (Optional)
      'groundtruth_difficult': [num_boxes] int64 tensor. (Optional)
      'groundtruth_group_of': [num_boxes] int64 tensor. (Optional)
      'groundtruth_instance_masks': 3D int64 tensor of instance masks
        (Optional).
    class_agnostic: Boolean indicating whether the detections are class-agnostic
      (i.e. binary). Default False.
    scale_to_absolute: Boolean indicating whether boxes, masks, keypoints should
      be scaled to absolute coordinates. Note that for IoU based evaluations,
      it does not matter whether boxes are expressed in absolute or relative
      coordinates. Default False.

  Returns:
    A dictionary with:
    'original_image': A [1, H, W, C] uint8 image tensor.
    'key': A string tensor with image identifier.
    'detection_boxes': [max_detections, 4] float32 tensor of boxes, in
      normalized or absolute coordinates, depending on the value of
      `scale_to_absolute`.
    'detection_scores': [max_detections] float32 tensor of scores.
    'detection_classes': [max_detections] int64 tensor of 1-indexed classes.
    'detection_masks': [max_detections, None, None] float32 tensor of binarized
      masks. (Only present if available in `detections`)
    'groundtruth_boxes': [num_boxes, 4] float32 tensor of boxes, in
      normalized or absolute coordinates, depending on the value of
      `scale_to_absolute`. (Optional)
    'groundtruth_classes': [num_boxes] int64 tensor of 1-indexed classes.
      (Optional)
    'groundtruth_area': [num_boxes] float32 tensor of bbox area. (Optional)
    'groundtruth_is_crowd': [num_boxes] int64 tensor. (Optional)
    'groundtruth_difficult': [num_boxes] int64 tensor. (Optional)
    'groundtruth_group_of': [num_boxes] int64 tensor. (Optional)
    'groundtruth_instance_masks': 3D int64 tensor of instance masks
      (Optional).

  """
  label_id_offset = 1  # Applying label id offset (b/63711816)

  input_data_fields = fields.InputDataFields()
  output_dict = {
      input_data_fields.original_image: image,
      input_data_fields.key: key,
  }

  detection_fields = fields.DetectionResultFields
  detection_boxes = detections[detection_fields.detection_boxes][0]
  output_dict[detection_fields.detection_boxes] = detection_boxes
  image_shape = tf.shape(image)
  if scale_to_absolute:
    absolute_detection_boxlist = box_list_ops.to_absolute_coordinates(
        box_list.BoxList(detection_boxes), image_shape[1], image_shape[2])
    output_dict[detection_fields.detection_boxes] = (
        absolute_detection_boxlist.get())
  detection_scores = detections[detection_fields.detection_scores][0]
  output_dict[detection_fields.detection_scores] = detection_scores

  if class_agnostic:
    detection_classes = tf.ones_like(detection_scores, dtype=tf.int64)
  else:
    detection_classes = (
        tf.to_int64(detections[detection_fields.detection_classes][0]) +
        label_id_offset)
  output_dict[detection_fields.detection_classes] = detection_classes

  if detection_fields.detection_masks in detections:
    detection_masks = detections[detection_fields.detection_masks][0]
    output_dict[detection_fields.detection_masks] = detection_masks
    if scale_to_absolute:
      # TODO: This should be done in model's postprocess
      # function ideally.
      detection_masks_reframed = ops.reframe_box_masks_to_image_masks(
          detection_masks, detection_boxes, image_shape[1], image_shape[2])
      detection_masks_reframed = tf.to_float(
          tf.greater(detection_masks_reframed, 0.5))
      output_dict[detection_fields.detection_masks] = detection_masks_reframed
  if detection_fields.detection_keypoints in detections:
    detection_keypoints = detections[detection_fields.detection_keypoints][0]
    output_dict[detection_fields.detection_keypoints] = detection_keypoints
    if scale_to_absolute:
      absolute_detection_keypoints = keypoint_ops.scale(
          detection_keypoints, image_shape[1], image_shape[2])
      output_dict[detection_fields.detection_keypoints] = (
          absolute_detection_keypoints)

  if groundtruth:
    output_dict.update(groundtruth)
    if scale_to_absolute:
      groundtruth_boxes = groundtruth[input_data_fields.groundtruth_boxes]
      absolute_gt_boxlist = box_list_ops.to_absolute_coordinates(
          box_list.BoxList(groundtruth_boxes), image_shape[1], image_shape[2])
      output_dict[input_data_fields.groundtruth_boxes] = (
          absolute_gt_boxlist.get())
    # For class-agnostic models, groundtruth classes all become 1.
    if class_agnostic:
      groundtruth_classes = groundtruth[input_data_fields.groundtruth_classes]
      groundtruth_classes = tf.ones_like(groundtruth_classes, dtype=tf.int64)
      output_dict[input_data_fields.groundtruth_classes] = groundtruth_classes

  return output_dict