README.md 5.28 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
![Logo](https://storage.googleapis.com/model_garden_artifacts/TF_Model_Garden.png)
2

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
3
# TensorFlow Official Models
4

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
5
6
7
8
9
10
11
12
The TensorFlow official models are a collection of models
that use TensorFlow’s high-level APIs.
They are intended to be well-maintained, tested, and kept up to date
with the latest TensorFlow API.
They should also be reasonably optimized for fast performance while still
being easy to read.
These models are used as end-to-end tests, ensuring that the models run
with the same or improved speed and performance with each new TensorFlow build.
13

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
14
## Model Implementations
15

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
16
### Natural Language Processing
17

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
18
19
20
21
22
23
| Model | Description | Reference |
| ----- | ----------- | --------- |
| [ALBERT](nlp/albert) | A Lite BERT for Self-supervised Learning of Language Representations | [arXiv:1909.11942](https://arxiv.org/abs/1909.11942) |
| [BERT](nlp/bert) | A powerful pre-trained language representation model: BERT (Bidirectional Encoder Representations from Transformers) | [arXiv:1810.04805](https://arxiv.org/abs/1810.04805) |
| [Transformer](nlp/transformer) | A transformer model to translate the WMT English to German dataset | [arXiv:1706.03762](https://arxiv.org/abs/1706.03762) |
| [XLNet](nlp/xlnet) | XLNet: Generalized Autoregressive Pretraining for Language Understanding | [arXiv:1906.08237](https://arxiv.org/abs/1906.08237) |
Hongkun Yu's avatar
Hongkun Yu committed
24

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
25
### Computer Vision
Hongkun Yu's avatar
Hongkun Yu committed
26

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
27
28
29
30
31
| Model | Description | Reference |
| ----- | ----------- | --------- |
| [MNIST](vision/image_classification) | A basic model to classify digits from the MNIST dataset | [Link](http://yann.lecun.com/exdb/mnist/) |
| [ResNet](vision/image_classification) | A deep residual network for image recognition | [arXiv:1512.03385](https://arxiv.org/abs/1512.03385) |
| [RetinaNet](vision/detection) | A fast and powerful object detector | [arXiv:1708.02002](https://arxiv.org/abs/1708.02002) |
32

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
33
### Other models
34

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
35
36
37
| Model | Description | Reference |
| ----- | ----------- | --------- |
| [NCF](recommendation) | Neural Collaborative Filtering model for recommendation tasks | [arXiv:1708.05031](https://arxiv.org/abs/1708.05031) |
38

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
39
---
40

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
41
## How to get started with the Model Garden official models
Hongkun Yu's avatar
Hongkun Yu committed
42

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
43
44
45
46
47
48
49
50
51
52
53
* The models in the master branch are developed using TensorFlow 2,
and they target the TensorFlow [nightly binaries](https://github.com/tensorflow/tensorflow#installation)
built from the
[master branch of TensorFlow](https://github.com/tensorflow/tensorflow/tree/master).
* The stable versions targeting releases of TensorFlow are available
as tagged branches or [downloadable releases](https://github.com/tensorflow/models/releases).
* Model repository version numbers match the target TensorFlow release,
such that
[release v2.1.0](https://github.com/tensorflow/models/releases/tag/v2.1.0)
are compatible with
[TensorFlow v2.1.0](https://github.com/tensorflow/tensorflow/releases/tag/v2.1.0).
Hongkun Yu's avatar
Hongkun Yu committed
54

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
55
Please follow the below steps before running models in this repository.
56

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
57
### Requirements
58

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
59
60
61
* The latest TensorFlow Model Garden release and TensorFlow 2
  * If you are on a version of TensorFlow earlier than 2.1, please
upgrade your TensorFlow to [the latest TensorFlow 2](https://www.tensorflow.org/install/).
Hongkun Yu's avatar
Hongkun Yu committed
62

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
63
64
65
```shell
pip3 install tf-nightly
```
Hongkun Yu's avatar
Hongkun Yu committed
66

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
67
### Installation
Hongkun Yu's avatar
Hongkun Yu committed
68

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
69
#### Method 1: Install the TensorFlow Model Garden pip package
Hongkun Yu's avatar
Hongkun Yu committed
70

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
71
72
73
**tf-models-nightly** is the nightly Model Garden package
created daily automatically. pip will install all models
and dependencies automatically.
74

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
75
76
77
```shell
pip install tf-models-nightly
```
78

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
79
80
Please check out our [example](colab/bert.ipynb)
to learn how to use a PIP package.
81

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
82
#### Method 2: Clone the source
83

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
84
1. Clone the GitHub repository:
85

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
86
87
88
```shell
git clone https://github.com/tensorflow/models.git
```
89

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
90
2. Add the top-level ***/models*** folder to the Python path.
91

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
92
93
94
```shell
export PYTHONPATH=$PYTHONPATH:/path/to/models
```
95

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
96
If you are using a Colab notebook, please set the Python path with os.environ.
97

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
98
99
100
101
```python
import os
os.environ['PYTHONPATH'] += ":/path/to/models"
```
102

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
103
3. Install other dependencies
104

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
105
106
107
```shell
pip3 install --user -r official/requirements.txt
```
Hongkun Yu's avatar
Hongkun Yu committed
108

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
109
---
Hongkun Yu's avatar
Hongkun Yu committed
110
111
112

## More models to come!

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
113
114
The team is actively developing new models.
In the near future, we will add:
Hongkun Yu's avatar
Hongkun Yu committed
115

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
116
117
118
119
120
- State-of-the-art language understanding models:
  More members in Transformer family
- Start-of-the-art image classification models:
  EfficientNet, MnasNet and variants.
- A set of excellent objection detection models.
Hongkun Yu's avatar
Hongkun Yu committed
121

Hongkun Yu's avatar
Hongkun Yu committed
122
123
If you would like to make any fixes or improvements to the models, please
[submit a pull request](https://github.com/tensorflow/models/compare).
124

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
125
126
127
---

## Contributions
128

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
129
130
Every model should follow our guidelines to uphold our objectives of readable,
usable, and maintainable code.
131

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
132
### General Guidelines
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
133

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
134
135
136
137
138
139
140
- Code should be well documented and tested.
- Runnable from a blank environment with ease.
- Trainable on: single GPU/CPU (baseline), multiple GPUs & TPUs
- Compatible with Python 3 (using [six](https://pythonhosted.org/six/)
when being compatible with Python 2 is necessary)
- Conform to
  [Google Python Style Guide](https://github.com/google/styleguide/blob/gh-pages/pyguide.md)
141

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
142
### Implementation Guidelines
143

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
144
145
These guidelines are to ensure consistent model implementations for
better readability and maintainability.
146

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
147
148
149
- Use [common utility functions](utils)
- Export SavedModel at the end of the training.
- Consistent flags and flag-parsing library ([read more here](utils/flags/guidelines.md))