optimization.py 7.46 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions and classes related to optimization (weight updates)."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import re

import tensorflow as tf


class WarmUp(tf.keras.optimizers.schedules.LearningRateSchedule):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
27
  """Applies a warmup schedule on a given learning rate decay schedule."""
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

  def __init__(
      self,
      initial_learning_rate,
      decay_schedule_fn,
      warmup_steps,
      power=1.0,
      name=None):
    super(WarmUp, self).__init__()
    self.initial_learning_rate = initial_learning_rate
    self.warmup_steps = warmup_steps
    self.power = power
    self.decay_schedule_fn = decay_schedule_fn
    self.name = name

  def __call__(self, step):
    with tf.name_scope(self.name or 'WarmUp') as name:
      # Implements polynomial warmup. i.e., if global_step < warmup_steps, the
      # learning rate will be `global_step/num_warmup_steps * init_lr`.
      global_step_float = tf.cast(step, tf.float32)
      warmup_steps_float = tf.cast(self.warmup_steps, tf.float32)
      warmup_percent_done = global_step_float / warmup_steps_float
      warmup_learning_rate = (
          self.initial_learning_rate *
          tf.math.pow(warmup_percent_done, self.power))
      return tf.cond(global_step_float < warmup_steps_float,
                     lambda: warmup_learning_rate,
                     lambda: self.decay_schedule_fn(step),
                     name=name)

  def get_config(self):
    return {
        'initial_learning_rate': self.initial_learning_rate,
        'decay_schedule_fn': self.decay_schedule_fn,
        'warmup_steps': self.warmup_steps,
        'power': self.power,
        'name': self.name
    }


def create_optimizer(init_lr, num_train_steps, num_warmup_steps):
  """Creates an optimizer with learning rate schedule."""
  # Implements linear decay of the learning rate.
  learning_rate_fn = tf.keras.optimizers.schedules.PolynomialDecay(
      initial_learning_rate=init_lr,
      decay_steps=num_train_steps,
      end_learning_rate=0.0)
  if num_warmup_steps:
    learning_rate_fn = WarmUp(initial_learning_rate=init_lr,
                              decay_schedule_fn=learning_rate_fn,
                              warmup_steps=num_warmup_steps)
  optimizer = AdamWeightDecay(
      learning_rate=learning_rate_fn,
      weight_decay_rate=0.01,
      beta_1=0.9,
      beta_2=0.999,
      epsilon=1e-6,
      exclude_from_weight_decay=['layer_norm', 'bias'])
  return optimizer


class AdamWeightDecay(tf.keras.optimizers.Adam):
  """Adam enables L2 weight decay and clip_by_global_norm on gradients.

  Just adding the square of the weights to the loss function is *not* the
  correct way of using L2 regularization/weight decay with Adam, since that will
  interact with the m and v parameters in strange ways.

  Instead we want ot decay the weights in a manner that doesn't interact with
  the m/v parameters. This is equivalent to adding the square of the weights to
  the loss with plain (non-momentum) SGD.
  """

  def __init__(self,
               learning_rate=0.001,
               beta_1=0.9,
               beta_2=0.999,
               epsilon=1e-7,
               amsgrad=False,
               weight_decay_rate=0.0,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
108
               include_in_weight_decay=None,
109
110
111
112
113
               exclude_from_weight_decay=None,
               name='AdamWeightDecay',
               **kwargs):
    super(AdamWeightDecay, self).__init__(
        learning_rate, beta_1, beta_2, epsilon, amsgrad, name, **kwargs)
114
    self.weight_decay_rate = weight_decay_rate
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
115
    self._include_in_weight_decay = include_in_weight_decay
116
117
118
119
120
121
122
123
124
    self._exclude_from_weight_decay = exclude_from_weight_decay

  @classmethod
  def from_config(cls, config):
    """Creates an optimizer from its config with WarmUp custom object."""
    custom_objects = {'WarmUp': WarmUp}
    return super(AdamWeightDecay, cls).from_config(
        config, custom_objects=custom_objects)

125
126
127
  def _prepare_local(self, var_device, var_dtype, apply_state):
    super(AdamWeightDecay, self)._prepare_local(var_device, var_dtype,
                                                apply_state)
Scott Zhu's avatar
Scott Zhu committed
128
    apply_state[(var_device, var_dtype)]['weight_decay_rate'] = tf.constant(
129
130
131
        self.weight_decay_rate, name='adam_weight_decay_rate')

  def _decay_weights_op(self, var, learning_rate, apply_state):
132
133
134
135
    do_decay = self._do_use_weight_decay(var.name)
    if do_decay:
      return var.assign_sub(
          learning_rate * var *
Scott Zhu's avatar
Scott Zhu committed
136
          apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'],
137
138
139
          use_locking=self._use_locking)
    return tf.no_op()

Zongwei Zhou's avatar
Zongwei Zhou committed
140
141
142
143
  def apply_gradients(self,
                      grads_and_vars,
                      name=None,
                      all_reduce_sum_gradients=True):
144
145
    grads, tvars = list(zip(*grads_and_vars))
    (grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0)
Zongwei Zhou's avatar
Zongwei Zhou committed
146
147
148
149
    return super(AdamWeightDecay, self).apply_gradients(
        zip(grads, tvars),
        name=name,
        all_reduce_sum_gradients=all_reduce_sum_gradients)
150

151
  def _get_lr(self, var_device, var_dtype, apply_state):
152
    """Retrieves the learning rate with the given state."""
153
154
    if apply_state is None:
      return self._decayed_lr_t[var_dtype], {}
155

156
157
158
159
160
    apply_state = apply_state or {}
    coefficients = apply_state.get((var_device, var_dtype))
    if coefficients is None:
      coefficients = self._fallback_apply_state(var_device, var_dtype)
      apply_state[(var_device, var_dtype)] = coefficients
161

162
163
164
165
    return coefficients['lr_t'], dict(apply_state=apply_state)

  def _resource_apply_dense(self, grad, var, apply_state=None):
    lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state)
166
167
    decay = self._decay_weights_op(var, lr_t, apply_state)
    with tf.control_dependencies([decay]):
168
      return super(AdamWeightDecay, self)._resource_apply_dense(
169
          grad, var, **kwargs)
170

171
172
  def _resource_apply_sparse(self, grad, var, indices, apply_state=None):
    lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state)
173
174
    decay = self._decay_weights_op(var, lr_t, apply_state)
    with tf.control_dependencies([decay]):
175
      return super(AdamWeightDecay, self)._resource_apply_sparse(
176
          grad, var, indices, **kwargs)
177
178
179
180

  def get_config(self):
    config = super(AdamWeightDecay, self).get_config()
    config.update({
181
        'weight_decay_rate': self.weight_decay_rate,
182
183
184
185
186
    })
    return config

  def _do_use_weight_decay(self, param_name):
    """Whether to use L2 weight decay for `param_name`."""
187
188
    if self.weight_decay_rate == 0:
      return False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
189
190
191
192
193
194

    if self._include_in_weight_decay:
      for r in self._include_in_weight_decay:
        if re.search(r, param_name) is not None:
          return True

195
196
197
198
199
    if self._exclude_from_weight_decay:
      for r in self._exclude_from_weight_decay:
        if re.search(r, param_name) is not None:
          return False
    return True