train_lib.py 9.06 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Multitask training driver library."""
# pytype: disable=attribute-error
import os
Le Hou's avatar
Le Hou committed
18
from typing import Optional
Hongkun Yu's avatar
Hongkun Yu committed
19
20
21
22
23
from absl import logging
import orbit
import tensorflow as tf
from official.core import base_task
from official.core import base_trainer as core_lib
24
from official.core import train_utils
25
26
from official.modeling.multitask import base_model
from official.modeling.multitask import base_trainer
Hongkun Yu's avatar
Hongkun Yu committed
27
28
from official.modeling.multitask import configs
from official.modeling.multitask import evaluator as evaluator_lib
29
from official.modeling.multitask import interleaving_trainer
Hongkun Yu's avatar
Hongkun Yu committed
30
from official.modeling.multitask import multitask
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from official.modeling.multitask import task_sampler

TRAINERS = {
    'interleaving': interleaving_trainer.MultiTaskInterleavingTrainer,
    'joint': base_trainer.MultiTaskBaseTrainer
}


def run_experiment(*, distribution_strategy: tf.distribute.Strategy,
                   task: multitask.MultiTask,
                   model: base_model.MultiTaskBaseModel, mode: str,
                   params: configs.MultiTaskExperimentConfig,
                   model_dir: str) -> base_model.MultiTaskBaseModel:
  """Runs train/eval configured by the experiment params.

  Args:
    distribution_strategy: A distribution distribution_strategy.
    task: A MultiTaskTask instance.
    model: A MultiTaskBaseModel instance.
    mode: A 'str', specifying the mode. Can be 'train', 'eval', 'train_and_eval'
      or 'continuous_eval'.
    params: ExperimentConfig instance.
    model_dir: A 'str', a path to store model checkpoints and summaries.

  Returns:
      model: `base_model.MultiTaskBaseModel` instance.
  """

  is_training = 'train' in mode
  is_eval = 'eval' in mode
  with distribution_strategy.scope():
    optimizer = task.create_optimizer(params.trainer.optimizer_config,
                                      params.runtime)
    kwargs = dict(multi_task=task, multi_task_model=model, optimizer=optimizer)
    if params.trainer.trainer_type == 'interleaving':
      sampler = task_sampler.get_task_sampler(params.trainer.task_sampler,
                                              task.task_weights)
      kwargs.update(dict(task_sampler=sampler))
    trainer = TRAINERS[params.trainer.trainer_type](
        **kwargs) if is_training else None
    if is_eval:
      evaluator = evaluator_lib.MultiTaskEvaluator(
          task=task,
          model=model,
Tianqi Liu's avatar
Tianqi Liu committed
75
76
77
          global_step=trainer.global_step if is_training else None,
          checkpoint_exporter=train_utils.maybe_create_best_ckpt_exporter(
              params, model_dir))
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    else:
      evaluator = None

  if trainer:
    checkpoint = trainer.checkpoint
    global_step = trainer.global_step
  else:
    checkpoint = evaluator.checkpoint
    global_step = evaluator.global_step

  # TODO(hongkuny,haozhangthu): Revisit initialization method.
  checkpoint_manager = tf.train.CheckpointManager(
      checkpoint,
      directory=model_dir,
      max_to_keep=params.trainer.max_to_keep,
      step_counter=global_step,
      checkpoint_interval=params.trainer.checkpoint_interval,
      init_fn=model.initialize)

  controller = orbit.Controller(
      strategy=distribution_strategy,
      trainer=trainer,
      evaluator=evaluator,
      global_step=global_step,
      steps_per_loop=params.trainer.steps_per_loop,
      checkpoint_manager=checkpoint_manager,
      summary_dir=os.path.join(model_dir, 'train'),
      eval_summary_dir=os.path.join(model_dir, 'validation'),
      summary_interval=params.trainer.summary_interval)

  logging.info('Starts to execute mode: %s', mode)
  with distribution_strategy.scope():
    if mode == 'train':
      controller.train(steps=params.trainer.train_steps)
    elif mode == 'train_and_eval':
      controller.train_and_evaluate(
          train_steps=params.trainer.train_steps,
          eval_steps=params.trainer.validation_steps,
          eval_interval=params.trainer.validation_interval)
    elif mode == 'eval':
      controller.evaluate(steps=params.trainer.validation_steps)
    elif mode == 'continuous_eval':

      def timeout_fn():
        if evaluator.global_step.numpy() >= params.trainer.train_steps:
          return True
        return False

      controller.evaluate_continuously(
          steps=params.trainer.validation_steps,
          timeout=params.trainer.continuous_eval_timeout,
          timeout_fn=timeout_fn)
    else:
      raise NotImplementedError('The mode is not implemented: %s' % mode)

    return model
Hongkun Yu's avatar
Hongkun Yu committed
134
135


136
def run_experiment_with_multitask_eval(
Hongkun Yu's avatar
Hongkun Yu committed
137
    *,
Hongkun Yu's avatar
Hongkun Yu committed
138
139
140
141
    distribution_strategy: tf.distribute.Strategy,
    train_task: base_task.Task,
    eval_tasks: multitask.MultiTask,
    mode: str,
Hongkun Yu's avatar
Hongkun Yu committed
142
    params: configs.MultiEvalExperimentConfig,
Hongkun Yu's avatar
Hongkun Yu committed
143
144
    model_dir: str,
    run_post_eval: bool = False,
Le Hou's avatar
Le Hou committed
145
146
    save_summary: bool = True,
    trainer: Optional[core_lib.Trainer] = None) -> tf.keras.Model:
Hongkun Yu's avatar
Hongkun Yu committed
147
148
149
150
151
152
153
154
155
156
  """Runs train/eval configured by the experiment params.

  Args:
    distribution_strategy: A distribution distribution_strategy.
    train_task: A base_task.Task instance.
    eval_tasks: A multitask.MultiTask with evaluation tasks.
    mode: A 'str', specifying the mode. Can be 'train', 'eval', 'train_and_eval'
      or 'continuous_eval'.
    params: MultiEvalExperimentConfig instance.
    model_dir: A 'str', a path to store model checkpoints and summaries.
Hongkun Yu's avatar
Hongkun Yu committed
157
158
159
    run_post_eval: Whether to run post eval once after training, metrics logs
      are returned.
    save_summary: Whether to save train and validation summary.
Le Hou's avatar
Le Hou committed
160
161
162
    trainer: the core_lib.Trainer instance. It should be created within the
      strategy.scope(). If not provided, an instance will be created by default
      if `mode` contains 'train'.
Hongkun Yu's avatar
Hongkun Yu committed
163
164
165
166
167
168
169
170
171

  Returns:
      model: `tf.keras.Model` instance.
  """

  is_training = 'train' in mode
  is_eval = 'eval' in mode
  with distribution_strategy.scope():
    if is_training:
Le Hou's avatar
Le Hou committed
172
      trainer = trainer or core_lib.Trainer(
Hongkun Yu's avatar
Hongkun Yu committed
173
174
          config=params,
          task=train_task,
Le Hou's avatar
Le Hou committed
175
176
177
          model=train_task.build_model(),
          optimizer=train_task.create_optimizer(
              params.trainer.optimizer_config, params.runtime),
Hongkun Yu's avatar
Hongkun Yu committed
178
179
180
181
          train=True,
          evaluate=False)
    else:
      trainer = None
Le Hou's avatar
Le Hou committed
182
183
    model = trainer.model if trainer else train_task.build_model()

Hongkun Yu's avatar
Hongkun Yu committed
184
185
186
187
    if is_eval:
      evaluator = evaluator_lib.MultiTaskEvaluator(
          task=eval_tasks,
          model=model,
188
189
190
          global_step=trainer.global_step if is_training else None,
          checkpoint_exporter=train_utils.maybe_create_best_ckpt_exporter(
              params, model_dir))
Hongkun Yu's avatar
Hongkun Yu committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    else:
      evaluator = None

  if trainer:
    checkpoint = trainer.checkpoint
    global_step = trainer.global_step
  else:
    checkpoint = evaluator.checkpoint
    global_step = evaluator.global_step

  checkpoint_manager = tf.train.CheckpointManager(
      checkpoint,
      directory=model_dir,
      max_to_keep=params.trainer.max_to_keep,
      step_counter=global_step,
      checkpoint_interval=params.trainer.checkpoint_interval,
      init_fn=trainer.initialize if trainer else None)

  controller = orbit.Controller(
      strategy=distribution_strategy,
      trainer=trainer,
      evaluator=evaluator,
      global_step=global_step,
      steps_per_loop=params.trainer.steps_per_loop,
      checkpoint_manager=checkpoint_manager,
Hongkun Yu's avatar
Hongkun Yu committed
216
217
218
219
220
      summary_dir=os.path.join(model_dir, 'train') if save_summary else None,
      eval_summary_dir=os.path.join(model_dir, 'validation') if
      (save_summary) else None,
      summary_interval=params.trainer.summary_interval if
      (save_summary) else None)
Hongkun Yu's avatar
Hongkun Yu committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

  logging.info('Starts to execute mode: %s', mode)
  with distribution_strategy.scope():
    if mode == 'train':
      controller.train(steps=params.trainer.train_steps)
    elif mode == 'train_and_eval':
      controller.train_and_evaluate(
          train_steps=params.trainer.train_steps,
          eval_steps=params.trainer.validation_steps,
          eval_interval=params.trainer.validation_interval)
    elif mode == 'eval':
      controller.evaluate(steps=params.trainer.validation_steps)
    elif mode == 'continuous_eval':

      def timeout_fn():
        if evaluator.global_step.numpy() >= params.trainer.train_steps:
          return True
        return False

      controller.evaluate_continuously(
          steps=params.trainer.validation_steps,
          timeout=params.trainer.continuous_eval_timeout,
          timeout_fn=timeout_fn)
    else:
      raise NotImplementedError('The mode is not implemented: %s' % mode)

Hongkun Yu's avatar
Hongkun Yu committed
247
248
249
250
251
    if run_post_eval:
      return model, evaluator.evaluate(
          tf.convert_to_tensor(params.trainer.validation_steps))
    else:
      return model, {}