retinanet.py 13.7 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Abdullah Rashwan's avatar
Abdullah Rashwan committed
15
"""RetinaNet task definition."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
16
from typing import Any, List, Mapping, Optional, Tuple
Abdullah Rashwan's avatar
Abdullah Rashwan committed
17
18
19

from absl import logging
import tensorflow as tf
Abdullah Rashwan's avatar
Abdullah Rashwan committed
20

21
from official.common import dataset_fn
Abdullah Rashwan's avatar
Abdullah Rashwan committed
22
23
24
from official.core import base_task
from official.core import task_factory
from official.vision.beta.configs import retinanet as exp_cfg
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
25
from official.vision.beta.dataloaders import input_reader_factory
Abdullah Rashwan's avatar
Abdullah Rashwan committed
26
27
from official.vision.beta.dataloaders import retinanet_input
from official.vision.beta.dataloaders import tf_example_decoder
Abdullah Rashwan's avatar
Abdullah Rashwan committed
28
from official.vision.beta.dataloaders import tfds_factory
Abdullah Rashwan's avatar
Abdullah Rashwan committed
29
30
from official.vision.beta.dataloaders import tf_example_label_map_decoder
from official.vision.beta.evaluation import coco_evaluator
Abdullah Rashwan's avatar
Abdullah Rashwan committed
31
32
from official.vision.beta.losses import focal_loss
from official.vision.beta.losses import loss_utils
Abdullah Rashwan's avatar
Abdullah Rashwan committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
from official.vision.beta.modeling import factory


@task_factory.register_task_cls(exp_cfg.RetinaNetTask)
class RetinaNetTask(base_task.Task):
  """A single-replica view of training procedure.

  RetinaNet task provides artifacts for training/evalution procedures, including
  loading/iterating over Datasets, initializing the model, calculating the loss,
  post-processing, and customized metrics with reduction.
  """

  def build_model(self):
    """Build RetinaNet model."""

    input_specs = tf.keras.layers.InputSpec(
        shape=[None] + self.task_config.model.input_size)

    l2_weight_decay = self.task_config.losses.l2_weight_decay
    # Divide weight decay by 2.0 to match the implementation of tf.nn.l2_loss.
    # (https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/l2)
    # (https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss)
    l2_regularizer = (tf.keras.regularizers.l2(
        l2_weight_decay / 2.0) if l2_weight_decay else None)

    model = factory.build_retinanet(
        input_specs=input_specs,
        model_config=self.task_config.model,
        l2_regularizer=l2_regularizer)
    return model

  def initialize(self, model: tf.keras.Model):
    """Loading pretrained checkpoint."""
    if not self.task_config.init_checkpoint:
      return

    ckpt_dir_or_file = self.task_config.init_checkpoint
    if tf.io.gfile.isdir(ckpt_dir_or_file):
      ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)

    # Restoring checkpoint.
    if self.task_config.init_checkpoint_modules == 'all':
      ckpt = tf.train.Checkpoint(**model.checkpoint_items)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
76
77
      status = ckpt.read(ckpt_dir_or_file)
      status.expect_partial().assert_existing_objects_matched()
Xianzhi Du's avatar
Xianzhi Du committed
78
79
80
81
82
83
84
85
    else:
      ckpt_items = {}
      if 'backbone' in self.task_config.init_checkpoint_modules:
        ckpt_items.update(backbone=model.backbone)
      if 'decoder' in self.task_config.init_checkpoint_modules:
        ckpt_items.update(decoder=model.decoder)

      ckpt = tf.train.Checkpoint(**ckpt_items)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
86
      status = ckpt.read(ckpt_dir_or_file)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
87
88
89
90
91
      status.expect_partial().assert_existing_objects_matched()

    logging.info('Finished loading pretrained checkpoint from %s',
                 ckpt_dir_or_file)

Fan Yang's avatar
Fan Yang committed
92
93
94
  def build_inputs(self,
                   params: exp_cfg.DataConfig,
                   input_context: Optional[tf.distribute.InputContext] = None):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
95
    """Build input dataset."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
96
97

    if params.tfds_name:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
98
      decoder = tfds_factory.get_detection_decoder(params.tfds_name)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
99
    else:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
100
101
102
103
104
105
106
107
108
109
110
      decoder_cfg = params.decoder.get()
      if params.decoder.type == 'simple_decoder':
        decoder = tf_example_decoder.TfExampleDecoder(
            regenerate_source_id=decoder_cfg.regenerate_source_id)
      elif params.decoder.type == 'label_map_decoder':
        decoder = tf_example_label_map_decoder.TfExampleDecoderLabelMap(
            label_map=decoder_cfg.label_map,
            regenerate_source_id=decoder_cfg.regenerate_source_id)
      else:
        raise ValueError('Unknown decoder type: {}!'.format(
            params.decoder.type))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
111

Abdullah Rashwan's avatar
Abdullah Rashwan committed
112
113
114
115
116
117
118
119
120
121
    parser = retinanet_input.Parser(
        output_size=self.task_config.model.input_size[:2],
        min_level=self.task_config.model.min_level,
        max_level=self.task_config.model.max_level,
        num_scales=self.task_config.model.anchor.num_scales,
        aspect_ratios=self.task_config.model.anchor.aspect_ratios,
        anchor_size=self.task_config.model.anchor.anchor_size,
        dtype=params.dtype,
        match_threshold=params.parser.match_threshold,
        unmatched_threshold=params.parser.unmatched_threshold,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
122
        aug_type=params.parser.aug_type,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
123
124
125
126
127
128
        aug_rand_hflip=params.parser.aug_rand_hflip,
        aug_scale_min=params.parser.aug_scale_min,
        aug_scale_max=params.parser.aug_scale_max,
        skip_crowd_during_training=params.parser.skip_crowd_during_training,
        max_num_instances=params.parser.max_num_instances)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
129
    reader = input_reader_factory.input_reader_generator(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
130
        params,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
131
        dataset_fn=dataset_fn.pick_dataset_fn(params.file_type),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
132
133
134
135
136
137
        decoder_fn=decoder.decode,
        parser_fn=parser.parse_fn(params.is_training))
    dataset = reader.read(input_context=input_context)

    return dataset

Xianzhi Du's avatar
Xianzhi Du committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
  def build_attribute_loss(self,
                           attribute_heads: List[exp_cfg.AttributeHead],
                           outputs: Mapping[str, Any],
                           labels: Mapping[str, Any],
                           box_sample_weight: tf.Tensor) -> float:
    """Computes attribute loss.

    Args:
      attribute_heads: a list of attribute head configs.
      outputs: RetinaNet model outputs.
      labels: RetinaNet labels.
      box_sample_weight: normalized bounding box sample weights.

    Returns:
      Attribute loss of all attribute heads.
    """
    attribute_loss = 0.0
    for head in attribute_heads:
      if head.name not in labels['attribute_targets']:
        raise ValueError(f'Attribute {head.name} not found in label targets.')
      if head.name not in outputs['attribute_outputs']:
        raise ValueError(f'Attribute {head.name} not found in model outputs.')

Abdullah Rashwan's avatar
Abdullah Rashwan committed
161
      y_true_att = loss_utils.multi_level_flatten(
Xianzhi Du's avatar
Xianzhi Du committed
162
          labels['attribute_targets'][head.name], last_dim=head.size)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
163
      y_pred_att = loss_utils.multi_level_flatten(
Xianzhi Du's avatar
Xianzhi Du committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
          outputs['attribute_outputs'][head.name], last_dim=head.size)
      if head.type == 'regression':
        att_loss_fn = tf.keras.losses.Huber(
            1.0, reduction=tf.keras.losses.Reduction.SUM)
        att_loss = att_loss_fn(
            y_true=y_true_att,
            y_pred=y_pred_att,
            sample_weight=box_sample_weight)
      else:
        raise ValueError(f'Attribute type {head.type} not supported.')
      attribute_loss += att_loss

    return attribute_loss

Fan Yang's avatar
Fan Yang committed
178
179
180
181
  def build_losses(self,
                   outputs: Mapping[str, Any],
                   labels: Mapping[str, Any],
                   aux_losses: Optional[Any] = None):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
182
183
    """Build RetinaNet losses."""
    params = self.task_config
Xianzhi Du's avatar
Xianzhi Du committed
184
185
    attribute_heads = self.task_config.model.head.attribute_heads

Abdullah Rashwan's avatar
Abdullah Rashwan committed
186
    cls_loss_fn = focal_loss.FocalLoss(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
187
188
189
        alpha=params.losses.focal_loss_alpha,
        gamma=params.losses.focal_loss_gamma,
        reduction=tf.keras.losses.Reduction.SUM)
Zhenyu Tan's avatar
Zhenyu Tan committed
190
    box_loss_fn = tf.keras.losses.Huber(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
191
192
193
194
195
196
197
198
199
        params.losses.huber_loss_delta, reduction=tf.keras.losses.Reduction.SUM)

    # Sums all positives in a batch for normalization and avoids zero
    # num_positives_sum, which would lead to inf loss during training
    cls_sample_weight = labels['cls_weights']
    box_sample_weight = labels['box_weights']
    num_positives = tf.reduce_sum(box_sample_weight) + 1.0
    cls_sample_weight = cls_sample_weight / num_positives
    box_sample_weight = box_sample_weight / num_positives
Abdullah Rashwan's avatar
Abdullah Rashwan committed
200
    y_true_cls = loss_utils.multi_level_flatten(
Zhenyu Tan's avatar
Zhenyu Tan committed
201
202
        labels['cls_targets'], last_dim=None)
    y_true_cls = tf.one_hot(y_true_cls, params.model.num_classes)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
203
    y_pred_cls = loss_utils.multi_level_flatten(
Zhenyu Tan's avatar
Zhenyu Tan committed
204
        outputs['cls_outputs'], last_dim=params.model.num_classes)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
205
    y_true_box = loss_utils.multi_level_flatten(
Zhenyu Tan's avatar
Zhenyu Tan committed
206
        labels['box_targets'], last_dim=4)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
207
    y_pred_box = loss_utils.multi_level_flatten(
Zhenyu Tan's avatar
Zhenyu Tan committed
208
209
        outputs['box_outputs'], last_dim=4)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
210
    cls_loss = cls_loss_fn(
Zhenyu Tan's avatar
Zhenyu Tan committed
211
        y_true=y_true_cls, y_pred=y_pred_cls, sample_weight=cls_sample_weight)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
212
    box_loss = box_loss_fn(
Zhenyu Tan's avatar
Zhenyu Tan committed
213
        y_true=y_true_box, y_pred=y_pred_box, sample_weight=box_sample_weight)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
214
215
216

    model_loss = cls_loss + params.losses.box_loss_weight * box_loss

Xianzhi Du's avatar
Xianzhi Du committed
217
218
219
220
    if attribute_heads:
      model_loss += self.build_attribute_loss(attribute_heads, outputs, labels,
                                              box_sample_weight)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
221
222
223
224
225
    total_loss = model_loss
    if aux_losses:
      reg_loss = tf.reduce_sum(aux_losses)
      total_loss = model_loss + reg_loss

Abdullah Rashwan's avatar
Abdullah Rashwan committed
226
227
    total_loss = params.losses.loss_weight * total_loss

Abdullah Rashwan's avatar
Abdullah Rashwan committed
228
229
    return total_loss, cls_loss, box_loss, model_loss

Fan Yang's avatar
Fan Yang committed
230
  def build_metrics(self, training: bool = True):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
231
232
233
234
235
236
237
    """Build detection metrics."""
    metrics = []
    metric_names = ['total_loss', 'cls_loss', 'box_loss', 'model_loss']
    for name in metric_names:
      metrics.append(tf.keras.metrics.Mean(name, dtype=tf.float32))

    if not training:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
238
239
240
      if self.task_config.validation_data.tfds_name and self.task_config.annotation_file:
        raise ValueError(
            "Can't evaluate using annotation file when TFDS is used.")
Abdullah Rashwan's avatar
Abdullah Rashwan committed
241
      self.coco_metric = coco_evaluator.COCOEvaluator(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
242
          annotation_file=self.task_config.annotation_file,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
243
          include_mask=False,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
244
          per_category_metrics=self.task_config.per_category_metrics)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
245
246
247

    return metrics

Fan Yang's avatar
Fan Yang committed
248
249
250
251
252
  def train_step(self,
                 inputs: Tuple[Any, Any],
                 model: tf.keras.Model,
                 optimizer: tf.keras.optimizers.Optimizer,
                 metrics: Optional[List[Any]] = None):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
    """Does forward and backward.

    Args:
      inputs: a dictionary of input tensors.
      model: the model, forward pass definition.
      optimizer: the optimizer for this training step.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs
    num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
    with tf.GradientTape() as tape:
      outputs = model(features, training=True)
      outputs = tf.nest.map_structure(
          lambda x: tf.cast(x, tf.float32), outputs)

      # Computes per-replica loss.
      loss, cls_loss, box_loss, model_loss = self.build_losses(
          outputs=outputs, labels=labels, aux_losses=model.losses)
      scaled_loss = loss / num_replicas

      # For mixed_precision policy, when LossScaleOptimizer is used, loss is
      # scaled for numerical stability.
Pankaj Kanwar's avatar
Pankaj Kanwar committed
278
      if isinstance(optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
279
280
281
282
283
        scaled_loss = optimizer.get_scaled_loss(scaled_loss)

    tvars = model.trainable_variables
    grads = tape.gradient(scaled_loss, tvars)
    # Scales back gradient when LossScaleOptimizer is used.
Pankaj Kanwar's avatar
Pankaj Kanwar committed
284
    if isinstance(optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
      grads = optimizer.get_unscaled_gradients(grads)
    optimizer.apply_gradients(list(zip(grads, tvars)))

    logs = {self.loss: loss}

    all_losses = {
        'total_loss': loss,
        'cls_loss': cls_loss,
        'box_loss': box_loss,
        'model_loss': model_loss,
    }
    if metrics:
      for m in metrics:
        m.update_state(all_losses[m.name])
        logs.update({m.name: m.result()})

    return logs

Fan Yang's avatar
Fan Yang committed
303
304
305
306
  def validation_step(self,
                      inputs: Tuple[Any, Any],
                      model: tf.keras.Model,
                      metrics: Optional[List[Any]] = None):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
    """Validatation step.

    Args:
      inputs: a dictionary of input tensors.
      model: the keras.Model.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs

    outputs = model(features, anchor_boxes=labels['anchor_boxes'],
                    image_shape=labels['image_info'][:, 1, :],
                    training=False)
    loss, cls_loss, box_loss, model_loss = self.build_losses(
        outputs=outputs, labels=labels, aux_losses=model.losses)
    logs = {self.loss: loss}

    all_losses = {
        'total_loss': loss,
        'cls_loss': cls_loss,
        'box_loss': box_loss,
        'model_loss': model_loss,
    }

    coco_model_outputs = {
        'detection_boxes': outputs['detection_boxes'],
        'detection_scores': outputs['detection_scores'],
        'detection_classes': outputs['detection_classes'],
        'num_detections': outputs['num_detections'],
        'source_id': labels['groundtruths']['source_id'],
        'image_info': labels['image_info']
    }
    logs.update({self.coco_metric.name: (labels['groundtruths'],
                                         coco_model_outputs)})
    if metrics:
      for m in metrics:
        m.update_state(all_losses[m.name])
        logs.update({m.name: m.result()})
    return logs

  def aggregate_logs(self, state=None, step_outputs=None):
    if state is None:
      self.coco_metric.reset_states()
      state = self.coco_metric
    self.coco_metric.update_state(step_outputs[self.coco_metric.name][0],
                                  step_outputs[self.coco_metric.name][1])
    return state

357
  def reduce_aggregated_logs(self, aggregated_logs, global_step=None):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
358
    return self.coco_metric.result()