"research/slim/nets/resnet_v2_test.py" did not exist on "31f1af580a21b302ec7bcf7e94be7dd1ffa38eaa"
export_savedmodel.py 5.49 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Hongkun Yu's avatar
Hongkun Yu committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""A binary/library to export TF-NLP serving `SavedModel`."""
16
import dataclasses
Hongkun Yu's avatar
Hongkun Yu committed
17
18
import os
from typing import Any, Dict, Text
19

Hongkun Yu's avatar
Hongkun Yu committed
20
21
22
from absl import app
from absl import flags
import yaml
23

Hongkun Yu's avatar
Hongkun Yu committed
24
25
26
27
28
29
30
31
32
33
from official.core import base_task
from official.core import task_factory
from official.modeling import hyperparams
from official.modeling.hyperparams import base_config
from official.nlp.serving import export_savedmodel_util
from official.nlp.serving import serving_modules
from official.nlp.tasks import masked_lm
from official.nlp.tasks import question_answering
from official.nlp.tasks import sentence_prediction
from official.nlp.tasks import tagging
34
from official.nlp.tasks import translation
Hongkun Yu's avatar
Hongkun Yu committed
35
36
37
38
39
40
41
42
43
44
45

FLAGS = flags.FLAGS

SERVING_MODULES = {
    sentence_prediction.SentencePredictionTask:
        serving_modules.SentencePrediction,
    masked_lm.MaskedLMTask:
        serving_modules.MaskedLM,
    question_answering.QuestionAnsweringTask:
        serving_modules.QuestionAnswering,
    tagging.TaggingTask:
46
47
48
        serving_modules.Tagging,
    translation.TranslationTask:
        serving_modules.Translation
Hongkun Yu's avatar
Hongkun Yu committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
}


def define_flags():
  """Defines flags."""
  flags.DEFINE_string("task_name", "SentencePrediction", "The task to export.")
  flags.DEFINE_string("config_file", None,
                      "The path to task/experiment yaml config file.")
  flags.DEFINE_string(
      "checkpoint_path", None,
      "Object-based checkpoint path, from the training model directory.")
  flags.DEFINE_string("export_savedmodel_dir", None,
                      "Output saved model directory.")
  flags.DEFINE_string(
      "serving_params", None,
      "a YAML/JSON string or csv string for the serving parameters.")
  flags.DEFINE_string(
      "function_keys", None,
      "A string key to retrieve pre-defined serving signatures.")
Hongkun Yu's avatar
Hongkun Yu committed
68
69
70
71
  flags.DEFINE_string(
      "module_key", None,
      "For multi-task case, load the export module weights from a specific "
      "checkpoint item.")
Hongkun Yu's avatar
Hongkun Yu committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
  flags.DEFINE_bool("convert_tpu", False, "")
  flags.DEFINE_multi_integer("allowed_batch_size", None,
                             "Allowed batch sizes for batching ops.")


def lookup_export_module(task: base_task.Task):
  export_module_cls = SERVING_MODULES.get(task.__class__, None)
  if export_module_cls is None:
    ValueError("No registered export module for the task: %s", task.__class__)
  return export_module_cls


def create_export_module(*, task_name: Text, config_file: Text,
                         serving_params: Dict[Text, Any]):
  """Creates a ExportModule."""
  task_config_cls = None
  task_cls = None
  # pylint: disable=protected-access
  for key, value in task_factory._REGISTERED_TASK_CLS.items():
    print(key.__name__)
    if task_name in key.__name__:
      task_config_cls, task_cls = key, value
      break
  if task_cls is None:
    raise ValueError("Failed to identify the task class. The provided task "
                     f"name is {task_name}")
  # pylint: enable=protected-access
  # TODO(hongkuny): Figure out how to separate the task config from experiments.

  @dataclasses.dataclass
  class Dummy(base_config.Config):
    task: task_config_cls = task_config_cls()

  dummy_exp = Dummy()
  dummy_exp = hyperparams.override_params_dict(
      dummy_exp, config_file, is_strict=False)
  dummy_exp.task.validation_data = None
  task = task_cls(dummy_exp.task)
  model = task.build_model()
  export_module_cls = lookup_export_module(task)
  params = export_module_cls.Params(**serving_params)
  return export_module_cls(params=params, model=model)


def main(_):
  serving_params = yaml.load(
      hyperparams.nested_csv_str_to_json_str(FLAGS.serving_params),
      Loader=yaml.FullLoader)
  export_module = create_export_module(
      task_name=FLAGS.task_name,
      config_file=FLAGS.config_file,
      serving_params=serving_params)
  export_dir = export_savedmodel_util.export(
      export_module,
      function_keys=[FLAGS.function_keys],
      checkpoint_path=FLAGS.checkpoint_path,
Hongkun Yu's avatar
Hongkun Yu committed
128
129
      export_savedmodel_dir=FLAGS.export_savedmodel_dir,
      module_key=FLAGS.module_key)
Hongkun Yu's avatar
Hongkun Yu committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

  if FLAGS.convert_tpu:
    # pylint: disable=g-import-not-at-top
    from cloud_tpu.inference_converter import converter_cli
    from cloud_tpu.inference_converter import converter_options_pb2
    tpu_dir = os.path.join(export_dir, "tpu")
    options = converter_options_pb2.ConverterOptions()
    if FLAGS.allowed_batch_size is not None:
      allowed_batch_sizes = sorted(FLAGS.allowed_batch_size)
      options.batch_options.num_batch_threads = 4
      options.batch_options.max_batch_size = allowed_batch_sizes[-1]
      options.batch_options.batch_timeout_micros = 100000
      options.batch_options.allowed_batch_sizes[:] = allowed_batch_sizes
      options.batch_options.max_enqueued_batches = 1000
    converter_cli.ConvertSavedModel(
        export_dir, tpu_dir, function_alias="tpu_candidate", options=options,
        graph_rewrite_only=True)


if __name__ == "__main__":
  define_flags()
  app.run(main)