preprocessing.py 7.57 KB
Newer Older
Yanhui Liang's avatar
Yanhui Liang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Preprocessing step to create, read, write tf.Examples."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools
import random

import tensorflow as tf  # pylint: disable=g-bad-import-order

import coords
import features as features_lib
import numpy as np
import sgf_wrapper

TF_RECORD_CONFIG = tf.python_io.TFRecordOptions(
    tf.python_io.TFRecordCompressionType.ZLIB)


# Constructing tf.Examples
def _one_hot(board_size, index):
  onehot = np.zeros([board_size * board_size + 1], dtype=np.float32)
  onehot[index] = 1
  return onehot


def make_tf_example(features, pi, value):
  """
  Args:
    features: [N, N, FEATURE_DIM] nparray of uint8
    pi: [N * N + 1] nparray of float32
    value: float
  """
  return tf.train.Example(
      features=tf.train.Features(
          feature={
              'x': tf.train.Feature(
                  bytes_list=tf.train.BytesList(value=[features.tostring()])),
              'pi': tf.train.Feature(
                  bytes_list=tf.train.BytesList(value=[pi.tostring()])),
              'outcome': tf.train.Feature(
                  float_list=tf.train.FloatList(value=[value]))
          }))


# Write tf.Example to files
def write_tf_examples(filename, tf_examples, serialize=True):
  """
  Args:
    filename: Where to write tf.records
    tf_examples: An iterable of tf.Example
    serialize: whether to serialize the examples.
  """
  with tf.python_io.TFRecordWriter(
      filename, options=TF_RECORD_CONFIG) as writer:
    for ex in tf_examples:
      if serialize:
        writer.write(ex.SerializeToString())
      else:
        writer.write(ex)


# Read tf.Example from files
def _batch_parse_tf_example(board_size, batch_size, example_batch):
  """
  Args:
    example_batch: a batch of tf.Example
  Returns:
    A tuple (feature_tensor, dict of output tensors)
  """
  features = {
      'x': tf.FixedLenFeature([], tf.string),
      'pi': tf.FixedLenFeature([], tf.string),
      'outcome': tf.FixedLenFeature([], tf.float32),
  }
  parsed = tf.parse_example(example_batch, features)
  x = tf.decode_raw(parsed['x'], tf.uint8)
  x = tf.cast(x, tf.float32)
  x = tf.reshape(x, [batch_size, board_size, board_size,
                     features_lib.NEW_FEATURES_PLANES])
  pi = tf.decode_raw(parsed['pi'], tf.float32)
  pi = tf.reshape(pi, [batch_size, board_size * board_size + 1])
  outcome = parsed['outcome']
  outcome.set_shape([batch_size])
  return (x, {'pi_tensor': pi, 'value_tensor': outcome})


def read_tf_records(
    shuffle_buffer_size, batch_size, tf_records, num_repeats=None,
    shuffle_records=True, shuffle_examples=True, filter_amount=1.0):
  """
  Args:
    batch_size: batch size to return
    tf_records: a list of tf_record filenames
    num_repeats: how many times the data should be read (default: infinite)
    shuffle_records: whether to shuffle the order of files read
    shuffle_examples: whether to shuffle the tf.Examples
    shuffle_buffer_size: how big of a buffer to fill before shuffling.
    filter_amount: what fraction of records to keep
  Returns:
    a tf dataset of batched tensors
  """

  if shuffle_buffer_size is None:
    shuffle_buffer_size = params.shuffle_buffer_size
  if shuffle_records:
    random.shuffle(tf_records)
  record_list = tf.data.Dataset.from_tensor_slices(tf_records)

  # compression_type here must agree with write_tf_examples
  # cycle_length = how many tfrecord files are read in parallel
  # block_length = how many tf.Examples are read from each file before
  #   moving to the next file
  # The idea is to shuffle both the order of the files being read,
  # and the examples being read from the files.
  dataset = record_list.interleave(
      lambda x: tf.data.TFRecordDataset(x, compression_type='ZLIB'),
      cycle_length=64, block_length=16)
  dataset = dataset.filter(lambda x: tf.less(
      tf.random_uniform([1]), filter_amount)[0])
  # TODO(amj): apply py_func for transforms here.
  if num_repeats is not None:
    dataset = dataset.repeat(num_repeats)
  else:
    dataset = dataset.repeat()
  if shuffle_examples:
    dataset = dataset.shuffle(buffer_size=shuffle_buffer_size)
  dataset = dataset.batch(batch_size)
  return dataset


def get_input_tensors(params, batch_size, tf_records, num_repeats=None,
                      shuffle_records=True, shuffle_examples=True,
                      filter_amount=0.05):
  """Read tf.Records and prepare them for ingestion by dual_net.  See
  `read_tf_records` for parameter documentation.

  Returns a dict of tensors (see return value of batch_parse_tf_example)
  """
  shuffle_buffer_size = params.shuffle_buffer_size
  dataset = read_tf_records(
      shuffle_buffer_size, batch_size, tf_records, num_repeats=num_repeats,
      shuffle_records=shuffle_records, shuffle_examples=shuffle_examples,
      filter_amount=filter_amount)
  dataset = dataset.filter(lambda t: tf.equal(tf.shape(t)[0], batch_size))
  def batch_parse_tf_example(batch_size, dataset):
    return _batch_parse_tf_example(params.board_size, batch_size, dataset)
  dataset = dataset.map(functools.partial(
      batch_parse_tf_example, batch_size))
  return dataset.make_one_shot_iterator().get_next()


# End-to-end utility functions
def make_dataset_from_selfplay(data_extracts, params):
  """Make an iterable of tf.Examples.

  Args:
    data_extracts: An iterable of (position, pi, result) tuples

  Returns an iterable of tf.Examples.
  """
  board_size = params.board_size
  tf_examples = (make_tf_example(features_lib.extract_features(
      board_size, pos), pi, result) for pos, pi, result in data_extracts)
  return tf_examples


def make_dataset_from_sgf(board_size, sgf_filename, tf_record):
  pwcs = sgf_wrapper.replay_sgf_file(board_size, sgf_filename)
  def make_tf_example_from_pwc(pwcs):
    return _make_tf_example_from_pwc(board_size, pwcs)
  tf_examples = map(make_tf_example_from_pwc, pwcs)
  write_tf_examples(tf_record, tf_examples)


def _make_tf_example_from_pwc(board_size, position_w_context):
  features = features_lib.extract_features(
      board_size, position_w_context.position)
  pi = _one_hot(board_size, coords.to_flat(position_w_context.next_move))
  value = position_w_context.result
  return make_tf_example(features, pi, value)


def shuffle_tf_examples(shuffle_buffer_size, gather_size, records_to_shuffle):
  """Read through tf.Record and yield shuffled, but unparsed tf.Examples.

  Args:
    shuffle_buffer_size: the size for shuffle buffer
    gather_size: The number of tf.Examples to be gathered together
    records_to_shuffle: A list of filenames

  Returns:
    An iterator yielding lists of bytes, which are serialized tf.Examples.
  """
  dataset = read_tf_records(shuffle_buffer_size, gather_size,
                            records_to_shuffle, num_repeats=1)
  batch = dataset.make_one_shot_iterator().get_next()
  sess = tf.Session()
  while True:
    try:
      result = sess.run(batch)
      yield list(result)
    except tf.errors.OutOfRangeError:
      break