minigo.py 15.6 KB
Newer Older
Yanhui Liang's avatar
Yanhui Liang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Train MiniGo with several iterations of RL learning.

One iteration of RL learning consists of bootstrap, selfplay, gather and train:
  bootstrap: Initialize a random model
  selfplay: Play games with the latest model to produce data used for training
  gather: Group games played with the same model into larger files of tfexamples
  train: Train a new model with the selfplay results from the most recent
    N generations.
After training, validation can be performed on the holdout data.
Given two models, evaluation can be applied to choose a stronger model.
The training pipeline consists of multiple RL learning iterations to achieve
better models.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import os
import random
import socket
import sys
import time

import tensorflow as tf  # pylint: disable=g-bad-import-order

import dualnet
import evaluation
import go
import model_params
import preprocessing
import selfplay_mcts
import utils

_TF_RECORD_SUFFIX = '.tfrecord.zz'


def _ensure_dir_exists(directory):
  """Check if directory exists. If not, create it.

  Args:
    directory: A given directory
  """
  if os.path.isdir(directory) is False:
    tf.gfile.MakeDirs(directory)


def bootstrap(estimator_model_dir, trained_models_dir, params):
  """Initialize the model with random weights.

  Args:
    estimator_model_dir: tf.estimator model directory.
    trained_models_dir: Dir to save the trained models. Here to export the first
      bootstrapped generation.
    params: An object of hyperparameters for the model.
  """
  bootstrap_name = utils.generate_model_name(0)
  _ensure_dir_exists(trained_models_dir)
  bootstrap_model_path = os.path.join(trained_models_dir, bootstrap_name)
  _ensure_dir_exists(estimator_model_dir)

  print('Bootstrapping with working dir {}\n Model 0 exported to {}'.format(
      estimator_model_dir, bootstrap_model_path))
  dualnet.bootstrap(estimator_model_dir, params)
  dualnet.export_model(estimator_model_dir, bootstrap_model_path)


def selfplay(model_name, trained_models_dir, selfplay_dir, holdout_dir, sgf_dir,
             params):
  """Perform selfplay with a specific model.

  Args:
    model_name: The name of the model used for selfplay.
    trained_models_dir: The path to the model files.
    selfplay_dir: Where to write the games. Set as 'base_dir/data/selfplay/'.
    holdout_dir: Where to write the holdout data. Set as
      'base_dir/data/holdout/'.
    sgf_dir: Where to write the sgf (Smart Game Format) files. Set as
      'base_dir/sgf/'.
    params: An object of hyperparameters for the model.
  """
  print('Playing a game with model {}'.format(model_name))
  # Set paths for the model with 'model_name'
  model_path = os.path.join(trained_models_dir, model_name)
  output_dir = os.path.join(selfplay_dir, model_name)
  holdout_dir = os.path.join(holdout_dir, model_name)
  # clean_sgf is to write sgf file without comments.
  # full_sgf is to write sgf file with comments.
  clean_sgf = os.path.join(sgf_dir, model_name, 'clean')
  full_sgf = os.path.join(sgf_dir, model_name, 'full')

  _ensure_dir_exists(output_dir)
  _ensure_dir_exists(holdout_dir)
  _ensure_dir_exists(clean_sgf)
  _ensure_dir_exists(full_sgf)

  with utils.logged_timer('Loading weights from {} ... '.format(model_path)):
    network = dualnet.DualNetRunner(model_path, params)

  with utils.logged_timer('Playing game'):
    player = selfplay_mcts.play(
        params.board_size, network, params.selfplay_readouts,
        params.selfplay_resign_threshold, params.simultaneous_leaves,
        params.selfplay_verbose)

  output_name = '{}-{}'.format(int(time.time()), socket.gethostname())

  def _write_sgf_data(dir_sgf, use_comments):
    with tf.gfile.GFile(
        os.path.join(dir_sgf, '{}.sgf'.format(output_name)), 'w') as f:
      f.write(player.to_sgf(use_comments=use_comments))

  _write_sgf_data(clean_sgf, use_comments=False)
  _write_sgf_data(full_sgf, use_comments=True)

  game_data = player.extract_data()
  tf_examples = preprocessing.make_dataset_from_selfplay(game_data, params)

  # Hold out 5% of games for evaluation.
  if random.random() < params.holdout_pct:
    fname = os.path.join(
        holdout_dir, ('{}'+_TF_RECORD_SUFFIX).format(output_name))
  else:
    fname = os.path.join(
        output_dir, ('{}'+_TF_RECORD_SUFFIX).format(output_name))

  preprocessing.write_tf_examples(fname, tf_examples)


def gather(selfplay_dir, training_chunk_dir, params):
  """Gather selfplay data into large training chunk.

  Args:
    selfplay_dir: Where to look for games. Set as 'base_dir/data/selfplay/'.
    training_chunk_dir: where to put collected games. Set as
      'base_dir/data/training_chunks/'.
    params: An object of hyperparameters for the model.
  """
  # Check the selfplay data from the most recent 50 models.
  _ensure_dir_exists(training_chunk_dir)
  sorted_model_dirs = sorted(tf.gfile.ListDirectory(selfplay_dir))
  models = [model_dir.strip('/')
            for model_dir in sorted_model_dirs[-params.gather_generation:]]

  with utils.logged_timer('Finding existing tfrecords...'):
    model_gamedata = {
        model: tf.gfile.Glob(
            os.path.join(selfplay_dir, model, '*'+_TF_RECORD_SUFFIX))
        for model in models
    }
  print('Found {} models'.format(len(models)))
  for model_name, record_files in sorted(model_gamedata.items()):
    print('    {}: {} files'.format(model_name, len(record_files)))

  meta_file = os.path.join(training_chunk_dir, 'meta.txt')
  try:
    with tf.gfile.GFile(meta_file, 'r') as f:
      already_processed = set(f.read().split())
  except tf.errors.NotFoundError:
    already_processed = set()

  num_already_processed = len(already_processed)

  for model_name, record_files in sorted(model_gamedata.items()):
    if set(record_files) <= already_processed:
      continue
    print('Gathering files from {}:'.format(model_name))
    tf_examples = preprocessing.shuffle_tf_examples(
        params.shuffle_buffer_size, params.examples_per_chunk, record_files)
    # tqdm to make the loops show a smart progress meter
    for i, example_batch in enumerate(tf_examples):
      output_record = os.path.join(
          training_chunk_dir,
          ('{}-{}'+_TF_RECORD_SUFFIX).format(model_name, str(i)))
      preprocessing.write_tf_examples(
          output_record, example_batch, serialize=False)
    already_processed.update(record_files)

  print('Processed {} new files'.format(
      len(already_processed) - num_already_processed))
  with tf.gfile.GFile(meta_file, 'w') as f:
    f.write('\n'.join(sorted(already_processed)))


def train(trained_models_dir, estimator_model_dir, training_chunk_dir, params):
  """Train the latest model from gathered data.

  Args:
    trained_models_dir: Where to export the completed generation.
    estimator_model_dir: tf.estimator model directory.
    training_chunk_dir: Directory where gathered training chunks are.
    params: An object of hyperparameters for the model.
  """
  model_num, model_name = utils.get_latest_model(trained_models_dir)
  print('Initializing from model {}'.format(model_name))

  new_model_name = utils.generate_model_name(model_num + 1)
  print('New model will be {}'.format(new_model_name))
  save_file = os.path.join(trained_models_dir, new_model_name)

  tf_records = sorted(
      tf.gfile.Glob(os.path.join(training_chunk_dir, '*'+_TF_RECORD_SUFFIX)))
  tf_records = tf_records[
      -(params.train_window_size // params.examples_per_chunk):]

  print('Training from: {} to {}'.format(tf_records[0], tf_records[-1]))
  with utils.logged_timer('Training'):
    dualnet.train(estimator_model_dir, tf_records, model_num + 1, params)
    dualnet.export_model(estimator_model_dir, save_file)


def validate(trained_models_dir, holdout_dir, estimator_model_dir, params):
  """Validate the latest model on the holdout dataset.

  Args:
    trained_models_dir: Directories where the completed generations/models are.
    holdout_dir: Directories where holdout data are.
    estimator_model_dir: tf.estimator model directory.
    params: An object of hyperparameters for the model.
  """
  model_num, _ = utils.get_latest_model(trained_models_dir)

  # Get the holdout game data
  nums_names = utils.get_models(trained_models_dir)

  # Model N was trained on games up through model N-1, so the validation set
  # should only be for models through N-1 as well, thus the (model_num) term.
  models = [num_name for num_name in nums_names if num_name[0] < model_num]

  # pair is a tuple of (model_num, model_name), like (13, 000013-modelname)
  holdout_dirs = [os.path.join(holdout_dir, pair[1])
                  for pair in models[-params.holdout_generation:]]
  tf_records = []
  with utils.logged_timer('Building lists of holdout files'):
    for record_dir in holdout_dirs:
      if os.path.exists(record_dir):  # make sure holdout dir exists
        tf_records.extend(
            tf.gfile.Glob(os.path.join(record_dir, '*'+_TF_RECORD_SUFFIX)))

  print('The length of tf_records is {}.'.format(len(tf_records)))
  first_tf_record = os.path.basename(tf_records[0])
  last_tf_record = os.path.basename(tf_records[-1])
  with utils.logged_timer('Validating from {} to {}'.format(
      first_tf_record, last_tf_record)):
    dualnet.validate(estimator_model_dir, tf_records, params)


def evaluate(trained_models_dir, black_model_name, white_model_name,
             evaluate_dir, params):
  """Evaluate with two models.

  With the model name, construct two DualNetRunners to play as black and white
  in a Go match. Two models play several names, and the model that wins by a
  margin of 55% will be the winner.

  Args:
    trained_models_dir: Directories where the completed generations/models are.
    black_model_name: The name of the model playing black.
    white_model_name: The name of the model playing white.
    evaluate_dir: Where to write the evaluation results. Set as
      'base_dir/sgf/evaluate/''
    params: An object of hyperparameters for the model.

  Returns:
    The model name of the winner.

  Raises:
      ValueError: if neither `WHITE` or `BLACK` is returned.
  """

  black_model = os.path.join(trained_models_dir, black_model_name)
  white_model = os.path.join(trained_models_dir, white_model_name)

  print('Evaluate models between {} and {}'.format(
      black_model_name, white_model_name))

  _ensure_dir_exists(evaluate_dir)

  with utils.logged_timer('Loading weights'):
    black_net = dualnet.DualNetRunner(black_model, params)
    white_net = dualnet.DualNetRunner(white_model, params)

  with utils.logged_timer('{} games'.format(params.eval_games)):
    winner = evaluation.play_match(
        params, black_net, white_net, params.eval_games,
        params.eval_readouts, evaluate_dir, params.eval_verbose)

  if winner != go.WHITE_NAME and winner != go.BLACK_NAME:
    raise ValueError('Winner should be either White or Black!')

  return black_model_name if winner == go.BLACK_NAME else white_model_name


def _set_params_from_board_size(board_size):
  """Set hyperparameters from board size."""
  params = model_params.MiniGoParams()
  k = utils.round_power_of_two(board_size ** 2 / 3)
  params.num_filters = k  # Number of filters in the convolution layer
  params.fc_width = 2 * k  # Width of each fully connected layer
  params.num_shared_layers = board_size  # Number of shared trunk layers
  params.board_size = board_size  # Board size

  # How many positions can fit on a graphics card. 256 for 9s, 16 or 32 for 19s.
  if FLAGS.board_size == 9:
    params.batch_size = 256
  else:
    params.batch_size = 32
  return params


def main(_):
  """Run the reinforcement learning loop."""
  tf.logging.set_verbosity(tf.logging.INFO)

  params = _set_params_from_board_size(FLAGS.board_size)

  # A dummy model for debug/testing purpose with fewer games and iterations
  if FLAGS.debug:
    params = model_params.DummyMiniGoParams()

  # Set directories for models and datasets
  base_dir = FLAGS.base_dir + str(FLAGS.board_size) + '_board_size/'
  dirs = utils.MiniGoDirectory(base_dir)
  # if no models have been trained, start from bootstrap model
  if os.path.isdir(base_dir) is False:
    print('No trained model exists! Starting from Bootstrap...')
    print('Creating random initial weights...')
    bootstrap(dirs.estimator_model_dir, dirs.trained_models_dir, params)
  else:
    print('A MiniGo base directory has been found! ')
    print('Start from the last checkpoint...')

  _, best_model_so_far = utils.get_latest_model(dirs.trained_models_dir)

  for rl_iter in range(params.max_iters_per_pipeline):
    print('RL_iteration: {}'.format(rl_iter))

    # Self-play to generate at least params.max_games_per_generation games
    selfplay(best_model_so_far, dirs.trained_models_dir, dirs.selfplay_dir,
             dirs.holdout_dir, dirs.sgf_dir, params)
    games = tf.gfile.Glob(
        os.path.join(dirs.selfplay_dir, best_model_so_far, '*.zz'))
    while len(games) < params.max_games_per_generation:
      selfplay(best_model_so_far, dirs.trained_models_dir, dirs.selfplay_dir,
               dirs.holdout_dir, dirs.sgf_dir, params)
      if FLAGS.validation:
        params = model_params.DummyValidationParams()
        selfplay(best_model_so_far, dirs.trained_models_dir, dirs.selfplay_dir,
                 dirs.holdout_dir, dirs.sgf_dir, params)
      games = tf.gfile.Glob(
          os.path.join(dirs.selfplay_dir, best_model_so_far, '*.zz'))

    print('Gathering game output...')
    gather(dirs.selfplay_dir, dirs.training_chunk_dir, params)

    print('Training on gathered game data...')
    train(dirs.trained_models_dir, dirs.estimator_model_dir,
          dirs.training_chunk_dir, params)

    if FLAGS.validation:
      print('Validating on the holdout game data...')
      validate(dirs.trained_models_dir, dirs.holdout_dir,
               dirs.estimator_model_dir, params)

    _, current_model = utils.get_latest_model(dirs.trained_models_dir)
    if FLAGS.evaluation:  # Perform evaluation if needed
      print('Evaluating the latest model...')
      best_model_so_far = evaluate(
          dirs.trained_models_dir, best_model_so_far, current_model,
          dirs.evaluate_dir, params)
      print('Winner: {}!'.format(best_model_so_far))
    else:
      best_model_so_far = current_model


if __name__ == '__main__':
  parser = argparse.ArgumentParser()
  parser.add_argument(
      '--base_dir',
      type=str,
      default='/tmp/minigo/',
      metavar='BD',
      help='Base directory for the MiniGo models and datasets.')
  parser.add_argument(
      '--board_size',
      type=int,
      default=9,
      metavar='N',
      choices=[9, 19],
      help='Go board size. The default size is 9.')
  parser.add_argument(
      '--evaluation',
      action='store_true',
      help='A boolean to specify evaluation in the RL pipeline.')
  parser.add_argument(
      '--debug',
      action='store_true',
      help='A boolean to indicate debug mode for testing purpose.')
  parser.add_argument(
      '--validation',
      action='store_true',
      help='A boolean to explicitly generate holdout data for validation.')

  FLAGS, unparsed = parser.parse_known_args()
  tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)