resnet_model.py 9.75 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""ResNet50 model for Keras.

Adapted from tf.keras.applications.resnet50.ResNet50().
Shining Sun's avatar
Shining Sun committed
18
This is ResNet model version 1.5.
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

Related papers/blogs:
- https://arxiv.org/abs/1512.03385
- https://arxiv.org/pdf/1603.05027v2.pdf
- http://torch.ch/blog/2016/02/04/resnets.html

"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import warnings

from tensorflow.python.keras import backend
from tensorflow.python.keras import layers
from tensorflow.python.keras import models
from tensorflow.python.keras import regularizers
from tensorflow.python.keras import utils


L2_WEIGHT_DECAY = 1e-4
BATCH_NORM_DECAY = 0.9
BATCH_NORM_EPSILON = 1e-5


def identity_block(input_tensor, kernel_size, filters, stage, block):
  """The identity block is the block that has no conv layer at shortcut.

  # Arguments
      input_tensor: input tensor
      kernel_size: default 3, the kernel size of
          middle conv layer at main path
      filters: list of integers, the filters of 3 conv layer at main path
      stage: integer, current stage label, used for generating layer names
      block: 'a','b'..., current block label, used for generating layer names

  # Returns
      Output tensor for the block.
  """
  filters1, filters2, filters3 = filters
  if backend.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

  x = layers.Conv2D(filters1, (1, 1),
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2a')(input_tensor)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2a')(x)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(filters2, kernel_size,
                    padding='same',
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2b')(x)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2b')(x)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(filters3, (1, 1),
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2c')(x)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2c')(x)

  x = layers.add([x, input_tensor])
  x = layers.Activation('relu')(x)
  return x


def conv_block(input_tensor,
               kernel_size,
               filters,
               stage,
               block,
               strides=(2, 2)):
  """A block that has a conv layer at shortcut.

  # Arguments
      input_tensor: input tensor
      kernel_size: default 3, the kernel size of
          middle conv layer at main path
      filters: list of integers, the filters of 3 conv layer at main path
      stage: integer, current stage label, used for generating layer names
      block: 'a','b'..., current block label, used for generating layer names
      strides: Strides for the second conv layer in the block.

  # Returns
      Output tensor for the block.

  Note that from stage 3,
  the second conv layer at main path is with strides=(2, 2)
  And the shortcut should have strides=(2, 2) as well
  """
  filters1, filters2, filters3 = filters
  if backend.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

  x = layers.Conv2D(filters1, (1, 1), kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2a')(input_tensor)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2a')(x)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(filters2, kernel_size, strides=strides, padding='same',
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2b')(x)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2b')(x)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(filters3, (1, 1),
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2c')(x)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2c')(x)

  shortcut = layers.Conv2D(filters3, (1, 1), strides=strides,
                           kernel_initializer='he_normal',
                           kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                           bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                           name=conv_name_base + '1')(input_tensor)
  shortcut = layers.BatchNormalization(axis=bn_axis,
                                       momentum=BATCH_NORM_DECAY,
                                       epsilon=BATCH_NORM_EPSILON,
                                       name=bn_name_base + '1')(shortcut)

  x = layers.add([x, shortcut])
  x = layers.Activation('relu')(x)
  return x


Shining Sun's avatar
Shining Sun committed
183
def resnet50(num_classes):
Shining Sun's avatar
Shining Sun committed
184
  # TODO(tfboyd): add training argument, just lik resnet56.
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
  """Instantiates the ResNet50 architecture.

  Args:
    num_classes: `int` number of classes for image classification.

  Returns:
      A Keras model instance.
  """
  # Determine proper input shape
  if backend.image_data_format() == 'channels_first':
    input_shape = (3, 224, 224)
    bn_axis = 1
  else:
    input_shape = (224, 224, 3)
    bn_axis = 3

  img_input = layers.Input(shape=input_shape)
  x = layers.ZeroPadding2D(padding=(3, 3), name='conv1_pad')(img_input)
  x = layers.Conv2D(64, (7, 7),
                    strides=(2, 2),
                    padding='valid',
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name='conv1')(x)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name='bn_conv1')(x)
  x = layers.Activation('relu')(x)
  x = layers.ZeroPadding2D(padding=(1, 1), name='pool1_pad')(x)
  x = layers.MaxPooling2D((3, 3), strides=(2, 2))(x)

  x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
  x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
  x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')

  x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
  x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
  x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
  x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')

  x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
  x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')

  x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
  x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
  x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')

  x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
  x = layers.Dense(
      num_classes, activation='softmax',
      kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
      bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
      name='fc1000')(x)

  # Create model.
  return models.Model(img_input, x, name='resnet50')