model_test.py 5.27 KB
Newer Older
yukun's avatar
yukun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Tests for DeepLab model and some helper functions."""

import tensorflow as tf

from deeplab import common
from deeplab import model


class DeeplabModelTest(tf.test.TestCase):

  def testWrongDeepLabVariant(self):
    model_options = common.ModelOptions([])._replace(
        model_variant='no_such_variant')
    with self.assertRaises(ValueError):
      model._get_logits(images=[], model_options=model_options)

  def testBuildDeepLabv2(self):
    batch_size = 2
    crop_size = [41, 41]

    # Test with two image_pyramids.
    image_pyramids = [[1], [0.5, 1]]

    # Test two model variants.
40
    model_variants = ['xception_65', 'mobilenet_v2']
yukun's avatar
yukun committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

    # Test with two output_types.
    outputs_to_num_classes = {'semantic': 3,
                              'direction': 2}

    expected_endpoints = [['merged_logits'],
                          ['merged_logits',
                           'logits_0.50',
                           'logits_1.00']]
    expected_num_logits = [1, 3]

    for model_variant in model_variants:
      model_options = common.ModelOptions(outputs_to_num_classes)._replace(
          add_image_level_feature=False,
          aspp_with_batch_norm=False,
          aspp_with_separable_conv=False,
          model_variant=model_variant)

      for i, image_pyramid in enumerate(image_pyramids):
        g = tf.Graph()
        with g.as_default():
          with self.test_session(graph=g):
            inputs = tf.random_uniform(
                (batch_size, crop_size[0], crop_size[1], 3))
            outputs_to_scales_to_logits = model.multi_scale_logits(
                inputs, model_options, image_pyramid=image_pyramid)

            # Check computed results for each output type.
            for output in outputs_to_num_classes:
              scales_to_logits = outputs_to_scales_to_logits[output]
              self.assertListEqual(sorted(scales_to_logits.keys()),
                                   sorted(expected_endpoints[i]))

              # Expected number of logits = len(image_pyramid) + 1, since the
              # last logits is merged from all the scales.
hsm207's avatar
hsm207 committed
76
              self.assertEqual(len(scales_to_logits), expected_num_logits[i])
yukun's avatar
yukun committed
77
78
79
80
81
82
83
84
85
86
87
88
89

  def testForwardpassDeepLabv3plus(self):
    crop_size = [33, 33]
    outputs_to_num_classes = {'semantic': 3}

    model_options = common.ModelOptions(
        outputs_to_num_classes,
        crop_size,
        output_stride=16
    )._replace(
        add_image_level_feature=True,
        aspp_with_batch_norm=True,
        logits_kernel_size=1,
90
        model_variant='mobilenet_v2')  # Employ MobileNetv2 for fast test.
yukun's avatar
yukun committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

    g = tf.Graph()
    with g.as_default():
      with self.test_session(graph=g) as sess:
        inputs = tf.random_uniform(
            (1, crop_size[0], crop_size[1], 3))
        outputs_to_scales_to_logits = model.multi_scale_logits(
            inputs,
            model_options,
            image_pyramid=[1.0])

        sess.run(tf.global_variables_initializer())
        outputs_to_scales_to_logits = sess.run(outputs_to_scales_to_logits)

        # Check computed results for each output type.
        for output in outputs_to_num_classes:
          scales_to_logits = outputs_to_scales_to_logits[output]
          # Expect only one output.
109
          self.assertEqual(len(scales_to_logits), 1)
yukun's avatar
yukun committed
110
111
112
          for logits in scales_to_logits.values():
            self.assertTrue(logits.any())

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
  def testBuildDeepLabWithDensePredictionCell(self):
    batch_size = 1
    crop_size = [33, 33]
    outputs_to_num_classes = {'semantic': 2}
    expected_endpoints = ['merged_logits']
    dense_prediction_cell_config = [
      {'kernel': 3, 'rate': [1, 6], 'op': 'conv', 'input': -1},
      {'kernel': 3, 'rate': [18, 15], 'op': 'conv', 'input': 0},
    ]
    model_options = common.ModelOptions(
        outputs_to_num_classes,
        crop_size,
        output_stride=16)._replace(
        aspp_with_batch_norm=True,
        model_variant='mobilenet_v2',
        dense_prediction_cell_config=dense_prediction_cell_config)
    g = tf.Graph()
    with g.as_default():
      with self.test_session(graph=g):
        inputs = tf.random_uniform(
            (batch_size, crop_size[0], crop_size[1], 3))
        outputs_to_scales_to_model_results = model.multi_scale_logits(
            inputs,
            model_options,
            image_pyramid=[1.0])
        for output in outputs_to_num_classes:
          scales_to_model_results = outputs_to_scales_to_model_results[output]
          self.assertListEqual(scales_to_model_results.keys(),
                               expected_endpoints)
          self.assertEqual(len(scales_to_model_results), 1)

yukun's avatar
yukun committed
144
145
146

if __name__ == '__main__':
  tf.test.main()