hooks_helper.py 4.16 KB
Newer Older
Yanhui Liang's avatar
Yanhui Liang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Hooks helper to return a list of TensorFlow hooks for training by name.

More hooks can be added to this set. To add a new hook, 1) add the new hook to
the registry in HOOKS, 2) add a corresponding function that parses out necessary
parameters.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

from official.utils.logging import hooks

_TENSORS_TO_LOG = dict((x, x) for x in ['learning_rate',
                                        'cross_entropy',
                                        'train_accuracy'])


def get_train_hooks(name_list, **kwargs):
  """Factory for getting a list of TensorFlow hooks for training by name.

  Args:
    name_list: a list of strings to name desired hook classes. Allowed:
      LoggingTensorHook, ProfilerHook, ExamplesPerSecondHook, which are defined
      as keys in HOOKS
    kwargs: a dictionary of arguments to the hooks.

  Returns:
    list of instantiated hooks, ready to be used in a classifier.train call.

  Raises:
    ValueError: if an unrecognized name is passed.
  """

  if not name_list:
    return []

  train_hooks = []
  for name in name_list:
    hook_name = HOOKS.get(name.strip().lower())
    if hook_name is None:
      raise ValueError('Unrecognized training hook requested: {}'.format(name))
    else:
      train_hooks.append(hook_name(**kwargs))

  return train_hooks


def get_logging_tensor_hook(every_n_iter=100, **kwargs):  # pylint: disable=unused-argument
  """Function to get LoggingTensorHook.

  Args:
    every_n_iter: `int`, print the values of `tensors` once every N local
      steps taken on the current worker.
    kwargs: a dictionary of arguments to LoggingTensorHook.

  Returns:
    Returns a LoggingTensorHook with a standard set of tensors that will be
    printed to stdout.
  """
  return tf.train.LoggingTensorHook(
      tensors=_TENSORS_TO_LOG,
      every_n_iter=every_n_iter)


def get_profiler_hook(save_steps=1000, **kwargs):  # pylint: disable=unused-argument
  """Function to get ProfilerHook.

  Args:
    save_steps: `int`, print profile traces every N steps.
    kwargs: a dictionary of arguments to ProfilerHook.

  Returns:
    Returns a ProfilerHook that writes out timelines that can be loaded into
    profiling tools like chrome://tracing.
  """
  return tf.train.ProfilerHook(save_steps=save_steps)


def get_examples_per_second_hook(every_n_steps=100,
                                 batch_size=128,
                                 warm_steps=10,
                                 **kwargs):  # pylint: disable=unused-argument
  """Function to get ExamplesPerSecondHook.

  Args:
    every_n_steps: `int`, print current and average examples per second every
      N steps.
    batch_size: `int`, total batch size used to calculate examples/second from
      global time.
    warm_steps: skip this number of steps before logging and running average.
    kwargs: a dictionary of arguments to ExamplesPerSecondHook.

  Returns:
    Returns a ProfilerHook that writes out timelines that can be loaded into
    profiling tools like chrome://tracing.
  """
  return hooks.ExamplesPerSecondHook(every_n_steps=every_n_steps,
                                     batch_size=batch_size,
                                     warm_steps=warm_steps)


# A dictionary to map one hook name and its corresponding function
HOOKS = {
    'loggingtensorhook': get_logging_tensor_hook,
    'profilerhook': get_profiler_hook,
    'examplespersecondhook': get_examples_per_second_hook,
}