create_ncf_data.py 4.07 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Binary to generate training/evaluation dataset for NCF model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json

# pylint: disable=g-bad-import-order
from absl import app
from absl import flags
import tensorflow.compat.v2 as tf
# pylint: enable=g-bad-import-order

from official.datasets import movielens
from official.recommendation import data_preprocessing

flags.DEFINE_string(
    "data_dir", None,
    "The input data dir at which training and evaluation tf record files "
    "will be saved.")
flags.DEFINE_string("meta_data_file_path", None,
                    "The path in which input meta data will be written.")
flags.DEFINE_enum("dataset", "ml-20m", ["ml-1m", "ml-20m"],
                  "Dataset to be trained/evaluated.")
flags.DEFINE_enum(
    "constructor_type", "bisection", ["bisection", "materialized"],
    "Strategy to use for generating false negatives. materialized has a "
    "precompute that scales badly, but a faster per-epoch construction "
    "time and can be faster on very large systems.")
flags.DEFINE_integer("num_train_epochs", 14,
                     "Total number of training epochs to generate.")
flags.DEFINE_integer(
    "num_negative_samples", 4,
    "Number of negative instances to pair with positive instance.")
50
51
52
53
54
55
56
57
flags.DEFINE_integer(
    "train_prebatch_size", 99000,
    "Batch size to be used for prebatching the dataset "
    "for training.")
flags.DEFINE_integer(
    "eval_prebatch_size", 99000,
    "Batch size to be used for prebatching the dataset "
    "for training.")
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

FLAGS = flags.FLAGS


def prepare_raw_data(flag_obj):
  """Downloads and prepares raw data for data generation."""
  movielens.download(flag_obj.dataset, flag_obj.data_dir)

  data_processing_params = {
      "train_epochs": flag_obj.num_train_epochs,
      "batch_size": flag_obj.prebatch_size,
      "eval_batch_size": flag_obj.prebatch_size,
      "batches_per_step": 1,
      "stream_files": True,
      "num_neg": flag_obj.num_negative_samples,
  }

  num_users, num_items, producer = data_preprocessing.instantiate_pipeline(
      dataset=flag_obj.dataset,
      data_dir=flag_obj.data_dir,
      params=data_processing_params,
      constructor_type=flag_obj.constructor_type,
      epoch_dir=flag_obj.data_dir,
      generate_data_offline=True)

  # pylint: disable=protected-access
  input_metadata = {
      "num_users": num_users,
      "num_items": num_items,
      "constructor_type": flag_obj.constructor_type,
      "num_train_elements": producer._elements_in_epoch,
      "num_eval_elements": producer._eval_elements_in_epoch,
      "num_train_epochs": flag_obj.num_train_epochs,
91
92
93
94
      "train_prebatch_size": flag_obj.train_prebatch_size,
      "eval_prebatch_size": flag_obj.eval_prebatch_size,
      "num_train_steps": producer.train_batches_per_epoch,
      "num_eval_steps": producer.eval_batches_per_epoch,
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
  }
  # pylint: enable=protected-access

  return producer, input_metadata


def generate_data():
  """Creates NCF train/eval dataset and writes input metadata as a file."""
  producer, input_metadata = prepare_raw_data(FLAGS)
  producer.run()

  with tf.io.gfile.GFile(FLAGS.meta_data_file_path, "w") as writer:
    writer.write(json.dumps(input_metadata, indent=4) + "\n")


def main(_):
  generate_data()


if __name__ == "__main__":
  flags.mark_flag_as_required("data_dir")
  flags.mark_flag_as_required("meta_data_file_path")
  app.run(main)