aspp.py 7.26 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Fan Yang's avatar
Fan Yang committed
15
"""Contains definitions of Atrous Spatial Pyramid Pooling (ASPP) decoder."""
16
from typing import Any, List, Mapping, Optional
Abdullah Rashwan's avatar
Abdullah Rashwan committed
17
18

# Import libraries
19

Abdullah Rashwan's avatar
Abdullah Rashwan committed
20
21
import tensorflow as tf

22
23
from official.modeling import hyperparams
from official.vision.beta.modeling.decoders import factory
Abdullah Rashwan's avatar
Abdullah Rashwan committed
24
from official.vision.beta.modeling.layers import deeplab
Abdullah Rashwan's avatar
Abdullah Rashwan committed
25
26
27
28


@tf.keras.utils.register_keras_serializable(package='Vision')
class ASPP(tf.keras.layers.Layer):
Fan Yang's avatar
Fan Yang committed
29
  """Creates an Atrous Spatial Pyramid Pooling (ASPP) layer."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
30

Fan Yang's avatar
Fan Yang committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
  def __init__(
      self,
      level: int,
      dilation_rates: List[int],
      num_filters: int = 256,
      pool_kernel_size: Optional[int] = None,
      use_sync_bn: bool = False,
      norm_momentum: float = 0.99,
      norm_epsilon: float = 0.001,
      activation: str = 'relu',
      dropout_rate: float = 0.0,
      kernel_initializer: str = 'VarianceScaling',
      kernel_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
      interpolation: str = 'bilinear',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
45
      use_depthwise_convolution: bool = False,
Fan Yang's avatar
Fan Yang committed
46
      **kwargs):
Fan Yang's avatar
Fan Yang committed
47
    """Initializes an Atrous Spatial Pyramid Pooling (ASPP) layer.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
48
49

    Args:
Fan Yang's avatar
Fan Yang committed
50
51
52
53
      level: An `int` level to apply ASPP.
      dilation_rates: A `list` of dilation rates.
      num_filters: An `int` number of output filters in ASPP.
      pool_kernel_size: A `list` of [height, width] of pooling kernel size or
Abdullah Rashwan's avatar
Abdullah Rashwan committed
54
55
        None. Pooling size is with respect to original image size, it will be
        scaled down by 2**level. If None, global average pooling is used.
Fan Yang's avatar
Fan Yang committed
56
57
58
59
60
61
62
63
64
65
66
67
      use_sync_bn: A `bool`. If True, use synchronized batch normalization.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A `float` added to variance to avoid dividing by zero.
      activation: A `str` activation to be used in ASPP.
      dropout_rate: A `float` rate for dropout regularization.
      kernel_initializer: A `str` name of kernel_initializer for convolutional
        layers.
      kernel_regularizer: A `tf.keras.regularizers.Regularizer` object for
        Conv2D. Default is None.
      interpolation: A `str` of interpolation method. It should be one of
        `bilinear`, `nearest`, `bicubic`, `area`, `lanczos3`, `lanczos5`,
        `gaussian`, or `mitchellcubic`.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
68
69
      use_depthwise_convolution: If True depthwise separable convolutions will
        be added to the Atrous spatial pyramid pooling.
Fan Yang's avatar
Fan Yang committed
70
      **kwargs: Additional keyword arguments to be passed.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
71
72
73
74
75
76
    """
    super(ASPP, self).__init__(**kwargs)
    self._config_dict = {
        'level': level,
        'dilation_rates': dilation_rates,
        'num_filters': num_filters,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
77
        'pool_kernel_size': pool_kernel_size,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
78
79
80
        'use_sync_bn': use_sync_bn,
        'norm_momentum': norm_momentum,
        'norm_epsilon': norm_epsilon,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
81
        'activation': activation,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
82
83
84
85
        'dropout_rate': dropout_rate,
        'kernel_initializer': kernel_initializer,
        'kernel_regularizer': kernel_regularizer,
        'interpolation': interpolation,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
86
        'use_depthwise_convolution': use_depthwise_convolution,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
87
88
89
    }

  def build(self, input_shape):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
90
91
92
93
94
95
    pool_kernel_size = None
    if self._config_dict['pool_kernel_size']:
      pool_kernel_size = [
          int(p_size // 2**self._config_dict['level'])
          for p_size in self._config_dict['pool_kernel_size']
      ]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
96
    self.aspp = deeplab.SpatialPyramidPooling(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
97
98
        output_channels=self._config_dict['num_filters'],
        dilation_rates=self._config_dict['dilation_rates'],
Abdullah Rashwan's avatar
Abdullah Rashwan committed
99
        pool_kernel_size=pool_kernel_size,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
100
101
102
        use_sync_bn=self._config_dict['use_sync_bn'],
        batchnorm_momentum=self._config_dict['norm_momentum'],
        batchnorm_epsilon=self._config_dict['norm_epsilon'],
Abdullah Rashwan's avatar
Abdullah Rashwan committed
103
        activation=self._config_dict['activation'],
Abdullah Rashwan's avatar
Abdullah Rashwan committed
104
105
106
        dropout=self._config_dict['dropout_rate'],
        kernel_initializer=self._config_dict['kernel_initializer'],
        kernel_regularizer=self._config_dict['kernel_regularizer'],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
107
108
109
        interpolation=self._config_dict['interpolation'],
        use_depthwise_convolution=self._config_dict['use_depthwise_convolution']
    )
Abdullah Rashwan's avatar
Abdullah Rashwan committed
110

Fan Yang's avatar
Fan Yang committed
111
  def call(self, inputs: Mapping[str, tf.Tensor]) -> Mapping[str, tf.Tensor]:
Fan Yang's avatar
Fan Yang committed
112
    """Calls the Atrous Spatial Pyramid Pooling (ASPP) layer on an input.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
113

Fan Yang's avatar
Fan Yang committed
114
    The output of ASPP will be a dict of {`level`, `tf.Tensor`} even if only one
Abdullah Rashwan's avatar
Abdullah Rashwan committed
115
    level is present. Hence, this will be compatible with the rest of the
Fan Yang's avatar
Fan Yang committed
116
    segmentation model interfaces.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
117
118

    Args:
Fan Yang's avatar
Fan Yang committed
119
120
121
122
123
      inputs: A `dict` of `tf.Tensor` where
        - key: A `str` of the level of the multilevel feature maps.
        - values: A `tf.Tensor` of shape [batch, height_l, width_l,
          filter_size].

Abdullah Rashwan's avatar
Abdullah Rashwan committed
124
    Returns:
Fan Yang's avatar
Fan Yang committed
125
126
127
      A `dict` of `tf.Tensor` where
        - key: A `str` of the level of the multilevel feature maps.
        - values: A `tf.Tensor` of output of ASPP module.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
128
129
130
131
132
133
    """
    outputs = {}
    level = str(self._config_dict['level'])
    outputs[level] = self.aspp(inputs[level])
    return outputs

Fan Yang's avatar
Fan Yang committed
134
  def get_config(self) -> Mapping[str, Any]:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
135
136
137
138
139
    return self._config_dict

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175


@factory.register_decoder_builder('aspp')
def build_aspp_decoder(
    input_specs: Mapping[str, tf.TensorShape],
    model_config: hyperparams.Config,
    l2_regularizer: Optional[tf.keras.regularizers.Regularizer] = None
) -> tf.keras.Model:
  """Builds ASPP decoder from a config.

  Args:
    input_specs: A `dict` of input specifications. A dictionary consists of
      {level: TensorShape} from a backbone. Note this is for consistent
        interface, and is not used by ASPP decoder.
    model_config: A OneOfConfig. Model config.
    l2_regularizer: A `tf.keras.regularizers.Regularizer` instance. Default to
      None.

  Returns:
    A `tf.keras.Model` instance of the ASPP decoder.

  Raises:
    ValueError: If the model_config.decoder.type is not `aspp`.
  """
  del input_specs  # input_specs is not used by ASPP decoder.
  decoder_type = model_config.decoder.type
  decoder_cfg = model_config.decoder.get()
  if decoder_type != 'aspp':
    raise ValueError(f'Inconsistent decoder type {decoder_type}. '
                     'Need to be `aspp`.')

  norm_activation_config = model_config.norm_activation
  return ASPP(
      level=decoder_cfg.level,
      dilation_rates=decoder_cfg.dilation_rates,
      num_filters=decoder_cfg.num_filters,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
176
      use_depthwise_convolution=decoder_cfg.use_depthwise_convolution,
177
178
179
180
181
182
183
      pool_kernel_size=decoder_cfg.pool_kernel_size,
      dropout_rate=decoder_cfg.dropout_rate,
      use_sync_bn=norm_activation_config.use_sync_bn,
      norm_momentum=norm_activation_config.norm_momentum,
      norm_epsilon=norm_activation_config.norm_epsilon,
      activation=norm_activation_config.activation,
      kernel_regularizer=l2_regularizer)