progressive_masked_lm.py 10.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Masked language task with progressive training."""

from typing import List
# Import libraries
from absl import logging
import dataclasses
import orbit
import tensorflow as tf

from official.core import config_definitions as cfg
from official.core import task_factory
from official.modeling import optimization
from official.modeling.hyperparams import base_config
from official.modeling.progressive import policies
from official.nlp.tasks import masked_lm


@dataclasses.dataclass
class StackingStageConfig(base_config.Config):
  num_layers: int = 0
  num_steps: int = 0
  warmup_steps: int = 10000
  initial_learning_rate: float = 1e-4
  end_learning_rate: float = 0.0
  decay_steps: int = 1000000


@dataclasses.dataclass
class ProgMaskedLMConfig(masked_lm.MaskedLMConfig):
  """The progressive model config."""
  optimizer_config: optimization.OptimizationConfig = (
      optimization.OptimizationConfig(
          optimizer=optimization.OptimizerConfig(type='adamw'),
          learning_rate=optimization.LrConfig(type='polynomial'),
          warmup=optimization.WarmupConfig(type='polynomial'),
      )
  )
  stage_list: List[StackingStageConfig] = dataclasses.field(
      default_factory=lambda: [  # pylint: disable=g-long-lambda
          StackingStageConfig(num_layers=3,
                              num_steps=112500,
                              warmup_steps=10000,
                              initial_learning_rate=1e-4,
                              end_learning_rate=1e-4,
                              decay_steps=112500),
          StackingStageConfig(num_layers=6,
                              num_steps=112500,
                              warmup_steps=10000,
                              initial_learning_rate=1e-4,
                              end_learning_rate=1e-4,
                              decay_steps=112500),
          StackingStageConfig(num_layers=12,
                              num_steps=450000,
                              warmup_steps=10000,
                              initial_learning_rate=1e-4,
                              end_learning_rate=0.0,
                              decay_steps=450000)])


@task_factory.register_task_cls(ProgMaskedLMConfig)
class ProgressiveMaskedLM(policies.ProgressivePolicy, masked_lm.MaskedLMTask):
  """Masked Language Model that supports progressive training.

  Inherate from the MaskedLmTask class to build model datasets etc.
  """

  def __init__(self, params: cfg.TaskConfig, logging_dir: str = None):
    masked_lm.MaskedLMTask.__init__(
        self, params=params, logging_dir=logging_dir)
    self._model_config = params.model
    self._optimizer_config = params.optimizer_config
    self._the_only_train_dataset = None
    self._the_only_eval_dataset = None
    policies.ProgressivePolicy.__init__(self)

  # Override
  def num_stages(self):
    return len(self.task_config.stage_list)

  # Override
  def num_steps(self, stage_id):
    return self.task_config.stage_list[stage_id].num_steps

  # Override
  def get_model(self, stage_id, old_model=None):
    """Build model for each stage."""
    num_layers = self.task_config.stage_list[stage_id].num_layers
    encoder_type = self._model_config.encoder.type
    params = self._model_config.replace(
        encoder={encoder_type: {
            'num_layers': num_layers
        }})
    model = self.build_model(params)

    # Run the model once, to make sure that all layers are built.
    # Otherwise, not all weights will be copied.
    _ = model(model.inputs)

    if stage_id > 0 and old_model is not None:
      logging.info('Stage %d copying weights.', stage_id)
      self._copy_weights_to_new_model(old_model=old_model,
                                      new_model=model)
    return model

  # Override
  def get_optimizer(self, stage_id):
    """Build optimizer for each stage."""
    params = self._optimizer_config.replace(
        learning_rate={
            'polynomial':
                {'decay_steps':
                     self.task_config.stage_list[
                         stage_id].decay_steps,
                 'initial_learning_rate':
                     self.task_config.stage_list[
                         stage_id].initial_learning_rate,
                 'end_learning_rate':
                     self.task_config.stage_list[
                         stage_id].end_learning_rate,
                 'power': 1,
                 'cycle': False,
                 }
        },
        warmup={
            'polynomial':
                {'warmup_steps':
                     self.task_config.stage_list[stage_id].warmup_steps,
                 'power': 1,
                }
        }
    )
    opt_factory = optimization.OptimizerFactory(params)
    optimizer = opt_factory.build_optimizer(opt_factory.build_learning_rate())

    return optimizer

  # overrides policies.ProgressivePolicy
  def get_train_dataset(self, stage_id):
    del stage_id
    if self._the_only_train_dataset is None:
      strategy = tf.distribute.get_strategy()
      self._the_only_train_dataset = orbit.utils.make_distributed_dataset(
          strategy,
          self.build_inputs,
          self.task_config.train_data)
    return self._the_only_train_dataset

  # overrides policies.ProgressivePolicy
  def get_eval_dataset(self, stage_id):
    del stage_id
    if self._the_only_eval_dataset is None:
      strategy = tf.distribute.get_strategy()
      self._the_only_eval_dataset = orbit.utils.make_distributed_dataset(
          strategy,
          self.build_inputs,
          self.task_config.validation_data)
    return self._the_only_eval_dataset

  def _copy_weights_to_new_model(self, old_model, new_model):
    """Copy model weights from the previous stage to the next.

    Args:
      old_model: nlp.modeling.models.bert_pretrainer.BertPretrainerV2. Model of
        the previous stage.
      new_model: nlp.modeling.models.bert_pretrainer.BertPretrainerV2. Model of
        the next stage.
    """
    # Copy weights of the embedding layers.
    # pylint: disable=protected-access
    # When using `encoder_scaffold`, there may be `_embedding_network`.
    if hasattr(new_model.encoder_network, '_embedding_network') and hasattr(
        old_model.encoder_network, '_embedding_network') and (
            new_model.encoder_network._embedding_network is not None):
      new_model.encoder_network._embedding_network.set_weights(
          old_model.encoder_network._embedding_network.get_weights())
    else:
      new_model.encoder_network._embedding_layer.set_weights(
          old_model.encoder_network._embedding_layer.get_weights())
      new_model.encoder_network._position_embedding_layer.set_weights(
          old_model.encoder_network._position_embedding_layer.get_weights())
      new_model.encoder_network._type_embedding_layer.set_weights(
          old_model.encoder_network._type_embedding_layer.get_weights())
      new_model.encoder_network._embedding_norm_layer.set_weights(
          old_model.encoder_network._embedding_norm_layer.get_weights())
    if hasattr(new_model.encoder_network, '_embedding_projection') and hasattr(
        old_model.encoder_network, '_embedding_projection'):
      if old_model.encoder_network._embedding_projection is not None:
        new_model.encoder_network._embedding_projection.set_weights(
            old_model.encoder_network._embedding_projection.get_weights())
    # pylint: enable=protected-access

    # Copy weights of the transformer layers.
    # The model can be EncoderScaffold or TransformerEncoder.
    if hasattr(old_model.encoder_network, 'hidden_layers'):
      old_layer_group = old_model.encoder_network.hidden_layers
    elif hasattr(old_model.encoder_network, 'transformer_layers'):
      old_layer_group = old_model.encoder_network.transformer_layers
    else:
      raise ValueError('Unrecognized encoder network: {}'.format(
          old_model.encoder_network))
    if hasattr(new_model.encoder_network, 'hidden_layers'):
      new_layer_group = new_model.encoder_network.hidden_layers
    elif hasattr(new_model.encoder_network, 'transformer_layers'):
      new_layer_group = new_model.encoder_network.transformer_layers
    else:
      raise ValueError('Unrecognized encoder network: {}'.format(
          new_model.encoder_network))
    for new_layer_idx in range(len(new_layer_group)):
      old_layer_idx = new_layer_idx % len(old_layer_group)
      new_layer_group[new_layer_idx].set_weights(
          old_layer_group[old_layer_idx].get_weights())
      if old_layer_idx != new_layer_idx:
        if hasattr(new_layer_group[new_layer_idx], 'reset_rezero'):
          # Reset ReZero's alpha to 0.
          new_layer_group[new_layer_idx].reset_rezero()

    # Copy weights of the final layer norm (if needed).
    # pylint: disable=protected-access
    if hasattr(new_model.encoder_network, '_output_layer_norm') and hasattr(
        old_model.encoder_network, '_output_layer_norm'):
      new_model.encoder_network._output_layer_norm.set_weights(
          old_model.encoder_network._output_layer_norm.get_weights())
    # pylint: enable=protected-access

    # Copy weights of the pooler layer.
    new_model.encoder_network.pooler_layer.set_weights(
        old_model.encoder_network.pooler_layer.get_weights())

    # Copy weights of the classification head.
    for idx in range(len(new_model.classification_heads)):
      new_model.classification_heads[idx].set_weights(
          old_model.classification_heads[idx].get_weights())

    # Copy weights of the masked_lm layer.
    new_model.masked_lm.set_weights(old_model.masked_lm.get_weights())