segmenter_trainer.py 6.92 KB
Newer Older
Ivan Bogatyy's avatar
Ivan Bogatyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A program to train a tensorflow neural net segmenter from a conll file."""




import base64
import os
import os.path
import random
import time
import tensorflow as tf

from tensorflow.python.platform import gfile
from tensorflow.python.platform import tf_logging as logging

from google.protobuf import text_format

from syntaxnet.ops import gen_parser_ops
from syntaxnet import task_spec_pb2
from syntaxnet import sentence_pb2

from dragnn.protos import spec_pb2
from dragnn.python.sentence_io import ConllSentenceReader

from dragnn.python import evaluation
from dragnn.python import graph_builder
from dragnn.python import lexicon
from dragnn.python import spec_builder
from dragnn.python import trainer_lib

import dragnn.python.load_dragnn_cc_impl
import syntaxnet.load_parser_ops

flags = tf.app.flags
FLAGS = flags.FLAGS

flags.DEFINE_string('tf_master', '',
                    'TensorFlow execution engine to connect to.')
flags.DEFINE_string('resource_path', '', 'Path to constructed resources.')
flags.DEFINE_string('tensorboard_dir', '',
                    'Directory for TensorBoard logs output.')
flags.DEFINE_string('checkpoint_filename', '',
                    'Filename to save the best checkpoint to.')

flags.DEFINE_string('training_corpus_path', '', 'Path to training data.')
flags.DEFINE_string('dev_corpus_path', '', 'Path to development set data.')

flags.DEFINE_bool('compute_lexicon', False, '')
flags.DEFINE_bool('projectivize_training_set', True, '')

flags.DEFINE_integer('num_epochs', 10, 'Number of epochs to train for.')
flags.DEFINE_integer('batch_size', 4, 'Batch size.')
flags.DEFINE_integer('report_every', 500,
                     'Report cost and training accuracy every this many steps.')
flags.DEFINE_string('hyperparams',
                    'decay_steps:32000 dropout_rate:0.8 gradient_clip_norm:1 '
                    'learning_method:"momentum" learning_rate:0.1 seed:1 '
                    'momentum:0.95 use_moving_average:true',
                    'Hyperparameters of the model to train, either in ProtoBuf'
                    'text format or base64-encoded ProtoBuf text format.')


def main(unused_argv):
  logging.set_verbosity(logging.INFO)

  if not gfile.IsDirectory(FLAGS.resource_path):
    gfile.MakeDirs(FLAGS.resource_path)

  # Constructs lexical resources for SyntaxNet in the given resource path, from
  # the training data.
  if FLAGS.compute_lexicon:
    logging.info('Computing lexicon...')
    lexicon.build_lexicon(FLAGS.resource_path, FLAGS.training_corpus_path)

  # Construct the "lookahead" ComponentSpec. This is a simple right-to-left RNN
  # sequence model, which encodes the context to the right of each token. It has
  # no loss except for the downstream components.
  lookahead = spec_builder.ComponentSpecBuilder('lookahead')
  lookahead.set_network_unit(
      name='wrapped_units.LayerNormBasicLSTMNetwork', hidden_layer_sizes='256')
  lookahead.set_transition_system(name='shift-only', left_to_right='false')
  lookahead.add_fixed_feature(name='char',
                              fml='input(-1).char input.char input(1).char',
                              embedding_dim=32)
  lookahead.add_fixed_feature(name='char-bigram',
                              fml='input.char-bigram',
                              embedding_dim=32)
  lookahead.fill_from_resources(FLAGS.resource_path, FLAGS.tf_master)

  # Construct the ComponentSpec for segmentation.
  segmenter = spec_builder.ComponentSpecBuilder('segmenter')
  segmenter.set_network_unit(
      name='wrapped_units.LayerNormBasicLSTMNetwork', hidden_layer_sizes='128')
  segmenter.set_transition_system(name='binary-segment-transitions')
  segmenter.add_token_link(
      source=lookahead, fml='input.focus stack.focus',
      embedding_dim=64)
  segmenter.fill_from_resources(FLAGS.resource_path, FLAGS.tf_master)

  # Build and write master_spec.
  master_spec = spec_pb2.MasterSpec()
  master_spec.component.extend([lookahead.spec, segmenter.spec])
  logging.info('Constructed master spec: %s', str(master_spec))
  with gfile.GFile(FLAGS.resource_path + '/master_spec', 'w') as f:
    f.write(str(master_spec).encode('utf-8'))

  hyperparam_config = spec_pb2.GridPoint()
  try:
    text_format.Parse(FLAGS.hyperparams, hyperparam_config)
  except text_format.ParseError:
    text_format.Parse(base64.b64decode(FLAGS.hyperparams), hyperparam_config)

  # Build the TensorFlow graph.
  graph = tf.Graph()
  with graph.as_default():
    builder = graph_builder.MasterBuilder(master_spec, hyperparam_config)
    component_targets = spec_builder.default_targets_from_spec(master_spec)
    trainers = [
        builder.add_training_from_config(target) for target in component_targets
    ]
    assert len(trainers) == 1
    annotator = builder.add_annotation()
    builder.add_saver()

  # Read in serialized protos from training data.
  training_set = ConllSentenceReader(
      FLAGS.training_corpus_path, projectivize=False).corpus()
  dev_set = ConllSentenceReader(
      FLAGS.dev_corpus_path, projectivize=False).corpus()

  # Convert word-based docs to char-based documents for segmentation training
  # and evaluation.
  with tf.Session(graph=tf.Graph()) as tmp_session:
    char_training_set_op = gen_parser_ops.segmenter_training_data_constructor(
        training_set)
    char_dev_set_op = gen_parser_ops.char_token_generator(dev_set)
    char_training_set = tmp_session.run(char_training_set_op)
    char_dev_set = tmp_session.run(char_dev_set_op)

  # Ready to train!
  logging.info('Training on %d sentences.', len(training_set))
  logging.info('Tuning on %d sentences.', len(dev_set))

  pretrain_steps = [0]
  train_steps = [FLAGS.num_epochs * len(training_set)]

  tf.logging.info('Creating TensorFlow checkpoint dir...')
  gfile.MakeDirs(os.path.dirname(FLAGS.checkpoint_filename))
  summary_writer = trainer_lib.get_summary_writer(FLAGS.tensorboard_dir)

  with tf.Session(FLAGS.tf_master, graph=graph) as sess:
    # Make sure to re-initialize all underlying state.
    sess.run(tf.global_variables_initializer())
    trainer_lib.run_training(
        sess, trainers, annotator, evaluation.segmentation_summaries,
        pretrain_steps, train_steps, char_training_set, char_dev_set, dev_set,
        FLAGS.batch_size, summary_writer, FLAGS.report_every, builder.saver,
        FLAGS.checkpoint_filename)


if __name__ == '__main__':
  tf.app.run()