wrapped_units.py 17.7 KB
Newer Older
Ivan Bogatyy's avatar
Ivan Bogatyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
"""Network units wrapping TensorFlows' tf.contrib.rnn cells.

Please put all wrapping logic for tf.contrib.rnn in this module; this will help
collect common subroutines that prove useful.
"""

import abc

import tensorflow as tf

from dragnn.python import network_units as dragnn
from syntaxnet.util import check


class BaseLSTMNetwork(dragnn.NetworkUnitInterface):
  """Base class for wrapped LSTM networks.

  This LSTM network unit supports multiple layers with layer normalization.
  Because it is imported from tf.contrib.rnn, we need to capture the created
  variables during initialization time.

  Layers:
    ...subclass-specific layers...
    last_layer: Alias for the activations of the last hidden layer.
    logits: Logits associated with component actions.
  """

  def __init__(self, component):
    """Initializes the LSTM base class.

    Parameters used:
      hidden_layer_sizes: Comma-delimited number of hidden units for each layer.
      input_dropout_rate (-1.0): Input dropout rate for each layer.  If < 0.0,
          use the global |dropout_rate| hyperparameter.
      recurrent_dropout_rate (0.8): Recurrent dropout rate.  If < 0.0, use the
          global |recurrent_dropout_rate| hyperparameter.
      layer_norm (True): Whether or not to use layer norm.

    Hyperparameters used:
      dropout_rate: Input dropout rate.
      recurrent_dropout_rate: Recurrent dropout rate.

    Args:
      component: parent ComponentBuilderBase object.
    """
    self._attrs = dragnn.get_attrs_with_defaults(
        component.spec.network_unit.parameters,
        defaults={
            'layer_norm': True,
            'input_dropout_rate': -1.0,
            'recurrent_dropout_rate': 0.8,
            'hidden_layer_sizes': '256',
        })

    self._hidden_layer_sizes = map(int,
                                   self._attrs['hidden_layer_sizes'].split(','))

    self._input_dropout_rate = self._attrs['input_dropout_rate']
    if self._input_dropout_rate < 0.0:
      self._input_dropout_rate = component.master.hyperparams.dropout_rate

    self._recurrent_dropout_rate = self._attrs['recurrent_dropout_rate']
    if self._recurrent_dropout_rate < 0.0:
      self._recurrent_dropout_rate = (
          component.master.hyperparams.recurrent_dropout_rate)
    if self._recurrent_dropout_rate < 0.0:
      self._recurrent_dropout_rate = component.master.hyperparams.dropout_rate

    tf.logging.info('[%s] input_dropout_rate=%s recurrent_dropout_rate=%s',
                    component.name, self._input_dropout_rate,
                    self._recurrent_dropout_rate)

    layers, context_layers = self.create_hidden_layers(component,
                                                       self._hidden_layer_sizes)
    last_layer_dim = layers[-1].dim
    layers.append(
        dragnn.Layer(component, name='last_layer', dim=last_layer_dim))
    layers.append(
        dragnn.Layer(component, name='logits', dim=component.num_actions))

    # Provide initial layers and context layers, so the base class constructor
    # can safely use accessors like get_layer_size().
    super(BaseLSTMNetwork, self).__init__(
        component, init_layers=layers, init_context_layers=context_layers)

    # Allocate parameters for the softmax.
    self._params.append(
        tf.get_variable(
            'weights_softmax', [last_layer_dim, component.num_actions],
            initializer=tf.random_normal_initializer(
                stddev=1e-4, seed=self._seed)))
    self._params.append(
        tf.get_variable(
            'bias_softmax', [component.num_actions],
            initializer=tf.zeros_initializer()))

  def get_logits(self, network_tensors):
    """Returns the logits for prediction."""
    return network_tensors[self.get_layer_index('logits')]

  @abc.abstractmethod
  def create_hidden_layers(self, component, hidden_layer_sizes):
    """Creates hidden network layers.

    Args:
      component: Parent ComponentBuilderBase object.
      hidden_layer_sizes: List of requested hidden layer activation sizes.

    Returns:
      layers: List of layers created by this network.
      context_layers: List of context layers created by this network.
    """
    pass

  def _append_base_layers(self, hidden_layers):
    """Appends layers defined by the base class to the |hidden_layers|."""
    last_layer = hidden_layers[-1]

    # TODO(googleuser): Uncomment the version that uses component.get_variable()
    # and delete the uses of tf.get_variable().
    # logits = tf.nn.xw_plus_b(last_layer,
    #                          self._component.get_variable('weights_softmax'),
    #                          self._component.get_variable('bias_softmax'))
    logits = tf.nn.xw_plus_b(last_layer,
                             tf.get_variable('weights_softmax'),
                             tf.get_variable('bias_softmax'))
    return hidden_layers + [last_layer, logits]

  def _create_cell(self, num_units, during_training):
    """Creates a single LSTM cell, possibly with dropout.

    Requires that BaseLSTMNetwork.__init__() was called.

    Args:
      num_units: Number of hidden units in the cell.
      during_training: Whether to create a cell for training (vs inference).

    Returns:
      A RNNCell of the requested size, possibly with dropout.
    """
    # No dropout in inference mode.
    if not during_training:
      return tf.contrib.rnn.LayerNormBasicLSTMCell(
          num_units, layer_norm=self._attrs['layer_norm'], reuse=True)

    # Otherwise, apply dropout to inputs and recurrences.
    cell = tf.contrib.rnn.LayerNormBasicLSTMCell(
        num_units,
        dropout_keep_prob=self._recurrent_dropout_rate,
        layer_norm=self._attrs['layer_norm'])
    cell = tf.contrib.rnn.DropoutWrapper(
        cell, input_keep_prob=self._input_dropout_rate)
    return cell

  def _create_train_cells(self):
    """Creates a list of LSTM cells for training."""
    return [
        self._create_cell(num_units, during_training=True)
        for num_units in self._hidden_layer_sizes
    ]

  def _create_inference_cells(self):
    """Creates a list of LSTM cells for inference."""
    return [
        self._create_cell(num_units, during_training=False)
        for num_units in self._hidden_layer_sizes
    ]

  def _capture_variables_as_params(self, function):
    """Captures variables created by a function in |self._params|.

    Args:
      function: Function whose variables should be captured.  The function
          should take one argument, its enclosing variable scope.
    """
    created_vars = {}

    def _custom_getter(getter, *args, **kwargs):
      """Calls the real getter and captures its result in |created_vars|."""
      real_variable = getter(*args, **kwargs)
      created_vars[real_variable.name] = real_variable
      return real_variable

    with tf.variable_scope(
        'cell', reuse=None, custom_getter=_custom_getter) as scope:
      function(scope)
    self._params.extend(created_vars.values())

  def _apply_with_captured_variables(self, function):
    """Applies a function using previously-captured variables.

    Args:
      function: Function to apply using captured variables.  The function
          should take one argument, its enclosing variable scope.

    Returns:
      Results of function application.
    """

    def _custom_getter(getter, *args, **kwargs):
      """Retrieves the normal or moving-average variables."""
      return self._component.get_variable(var_params=getter(*args, **kwargs))

    with tf.variable_scope(
        'cell', reuse=True, custom_getter=_custom_getter) as scope:
      return function(scope)


class LayerNormBasicLSTMNetwork(BaseLSTMNetwork):
  """Wrapper around tf.contrib.rnn.LayerNormBasicLSTMCell.

  Features:
    All inputs are concatenated.

  Subclass-specific layers:
    state_c_<n>: Cell states for the <n>'th LSTM layer (0-origin).
    state_h_<n>: Hidden states for the <n>'th LSTM layer (0-origin).
  """

  def __init__(self, component):
    """Sets up context and output layers, as well as a final softmax."""
    super(LayerNormBasicLSTMNetwork, self).__init__(component)

    # Wrap lists of training and inference sub-cells into multi-layer RNN cells.
    # Note that a |MultiRNNCell| state is a tuple of per-layer sub-states.
    self._train_cell = tf.contrib.rnn.MultiRNNCell(self._create_train_cells())
    self._inference_cell = tf.contrib.rnn.MultiRNNCell(
        self._create_inference_cells())

    def _cell_closure(scope):
      """Applies the LSTM cell to placeholder inputs and state."""
      placeholder_inputs = tf.placeholder(
          dtype=tf.float32, shape=(1, self._concatenated_input_dim))

      placeholder_substates = []
      for num_units in self._hidden_layer_sizes:
        placeholder_substate = tf.contrib.rnn.LSTMStateTuple(
            tf.placeholder(dtype=tf.float32, shape=(1, num_units)),
            tf.placeholder(dtype=tf.float32, shape=(1, num_units)))
        placeholder_substates.append(placeholder_substate)
      placeholder_state = tuple(placeholder_substates)

      self._train_cell(
          inputs=placeholder_inputs, state=placeholder_state, scope=scope)

    self._capture_variables_as_params(_cell_closure)

  def create_hidden_layers(self, component, hidden_layer_sizes):
    """See base class."""
    # Construct the layer meta info for the DRAGNN builder. Note that the order
    # of h and c are reversed compared to the vanilla DRAGNN LSTM cell, as
    # this is the standard in tf.contrib.rnn.
    #
    # NB: The h activations of the last LSTM must be the last layer, in order
    # for _append_base_layers() to work.
    layers = []
    for index, num_units in enumerate(hidden_layer_sizes):
      layers.append(
          dragnn.Layer(component, name='state_c_%d' % index, dim=num_units))
      layers.append(
          dragnn.Layer(component, name='state_h_%d' % index, dim=num_units))
    context_layers = list(layers)  # copy |layers|, don't alias it
    return layers, context_layers

  def create(self,
             fixed_embeddings,
             linked_embeddings,
             context_tensor_arrays,
             attention_tensor,
             during_training,
             stride=None):
    """See base class."""
    # NB: This cell pulls the lstm's h and c vectors from context_tensor_arrays
    # instead of through linked features.
    check.Eq(
        len(context_tensor_arrays), 2 * len(self._hidden_layer_sizes),
        'require two context tensors per hidden layer')

    # Rearrange the context tensors into a tuple of LSTM sub-states.
    length = context_tensor_arrays[0].size()
    substates = []
    for index, num_units in enumerate(self._hidden_layer_sizes):
      state_c = context_tensor_arrays[2 * index].read(length - 1)
      state_h = context_tensor_arrays[2 * index + 1].read(length - 1)

      # Fix shapes that for some reason are not set properly for an unknown
      # reason. TODO(googleuser): Why are the shapes not set?
      state_c.set_shape([tf.Dimension(None), num_units])
      state_h.set_shape([tf.Dimension(None), num_units])
      substates.append(tf.contrib.rnn.LSTMStateTuple(state_c, state_h))
    state = tuple(substates)

    input_tensor = dragnn.get_input_tensor(fixed_embeddings, linked_embeddings)
    cell = self._train_cell if during_training else self._inference_cell

    def _cell_closure(scope):
      """Applies the LSTM cell to the current inputs and state."""
      return cell(input_tensor, state, scope)

    unused_h, state = self._apply_with_captured_variables(_cell_closure)

    # Return tensors to be put into the tensor arrays / used to compute
    # objective.
    output_tensors = []
    for new_substate in state:
      new_c, new_h = new_substate
      output_tensors.append(new_c)
      output_tensors.append(new_h)
    return self._append_base_layers(output_tensors)


class BulkBiLSTMNetwork(BaseLSTMNetwork):
  """Bulk wrapper around tf.contrib.rnn.stack_bidirectional_dynamic_rnn().

  Features:
    lengths: [stride, 1] sequence lengths per batch item.
    All other features are concatenated into input activations.

  Subclass-specific layers:
    outputs: [stride * num_steps, self._output_dim] bi-LSTM activations.
  """

  def __init__(self, component):
    super(BulkBiLSTMNetwork, self).__init__(component)

    check.In('lengths', self._linked_feature_dims,
             'Missing required linked feature')
    check.Eq(self._linked_feature_dims['lengths'], 1,
             'Wrong dimension for "lengths" feature')
    self._input_dim = self._concatenated_input_dim - 1  # exclude 'lengths'
    self._output_dim = self.get_layer_size('outputs')
    tf.logging.info('[%s] Bulk bi-LSTM with input_dim=%d output_dim=%d',
                    component.name, self._input_dim, self._output_dim)

    # Create one training and inference cell per layer and direction.
    self._train_cells_forward = self._create_train_cells()
    self._train_cells_backward = self._create_train_cells()
    self._inference_cells_forward = self._create_inference_cells()
    self._inference_cells_backward = self._create_inference_cells()

    def _bilstm_closure(scope):
      """Applies the bi-LSTM to placeholder inputs and lengths."""
      # Use singleton |stride| and |steps| because their values don't affect the
      # weight variables.
      stride, steps = 1, 1
      placeholder_inputs = tf.placeholder(
          dtype=tf.float32, shape=[stride, steps, self._input_dim])
      placeholder_lengths = tf.placeholder(dtype=tf.int64, shape=[stride])

      # Omit the initial states and sequence lengths for simplicity; they don't
      # affect the weight variables.
      tf.contrib.rnn.stack_bidirectional_dynamic_rnn(
          self._train_cells_forward,
          self._train_cells_backward,
          placeholder_inputs,
          dtype=tf.float32,
          sequence_length=placeholder_lengths,
          scope=scope)

    self._capture_variables_as_params(_bilstm_closure)

    # Allocate parameters for the initial states.  Note that an LSTM state is a
    # tuple of two substates (c, h), so there are 4 variables per layer.
    for index, num_units in enumerate(self._hidden_layer_sizes):
      for direction in ['forward', 'backward']:
        for substate in ['c', 'h']:
          self._params.append(
              tf.get_variable(
                  'initial_state_%s_%s_%d' % (direction, substate, index),
                  [1, num_units],  # leading 1 for later batch-wise tiling
                  dtype=tf.float32,
                  initializer=tf.constant_initializer(0.0)))

  def create_hidden_layers(self, component, hidden_layer_sizes):
    """See base class."""
    dim = 2 * hidden_layer_sizes[-1]
    return [dragnn.Layer(component, name='outputs', dim=dim)], []

  def create(self,
             fixed_embeddings,
             linked_embeddings,
             context_tensor_arrays,
             attention_tensor,
             during_training,
             stride=None):
    """Requires |stride|; otherwise see base class."""
    check.NotNone(stride,
                  'BulkBiLSTMNetwork requires "stride" and must be called '
                  'in the bulk feature extractor component.')

    # Flatten the lengths into a vector.
    lengths = dragnn.lookup_named_tensor('lengths', linked_embeddings)
    lengths_s = tf.squeeze(lengths.tensor, [1])

    # Collect all other inputs into a batched tensor.
    linked_embeddings = [
        named_tensor for named_tensor in linked_embeddings
        if named_tensor.name != 'lengths'
    ]
    inputs_sxnxd = dragnn.get_input_tensor_with_stride(
        fixed_embeddings, linked_embeddings, stride)

    # Since get_input_tensor_with_stride() concatenates the input embeddings, it
    # obscures the static activation dimension, which the RNN library requires.
    # Restore it using set_shape().  Note that set_shape() merges into the known
    # shape, so only specify the activation dimension.
    inputs_sxnxd.set_shape(
        [tf.Dimension(None), tf.Dimension(None), self._input_dim])

    initial_states_forward, initial_states_backward = (
        self._create_initial_states(stride))

    if during_training:
      cells_forward = self._train_cells_forward
      cells_backward = self._train_cells_backward
    else:
      cells_forward = self._inference_cells_forward
      cells_backward = self._inference_cells_backward

    def _bilstm_closure(scope):
      """Applies the bi-LSTM to the current inputs."""
      outputs_sxnxd, _, _ = tf.contrib.rnn.stack_bidirectional_dynamic_rnn(
          cells_forward,
          cells_backward,
          inputs_sxnxd,
          initial_states_fw=initial_states_forward,
          initial_states_bw=initial_states_backward,
          sequence_length=lengths_s,
          scope=scope)
      return outputs_sxnxd

    # Layer outputs are not batched; flatten out the batch dimension.
    outputs_sxnxd = self._apply_with_captured_variables(_bilstm_closure)
    outputs_snxd = tf.reshape(outputs_sxnxd, [-1, self._output_dim])
    return self._append_base_layers([outputs_snxd])

  def _create_initial_states(self, stride):
    """Returns stacked and batched initial states for the bi-LSTM."""
    initial_states_forward = []
    initial_states_backward = []
    for index in range(len(self._hidden_layer_sizes)):
      # Retrieve the initial states for this layer.
      states_sxd = []
      for direction in ['forward', 'backward']:
        for substate in ['c', 'h']:
          state_1xd = self._component.get_variable('initial_state_%s_%s_%d' %
                                                   (direction, substate, index))
          state_sxd = tf.tile(state_1xd, [stride, 1])  # tile across the batch
          states_sxd.append(state_sxd)

      # Assemble and append forward and backward LSTM states.
      initial_states_forward.append(
          tf.contrib.rnn.LSTMStateTuple(states_sxd[0], states_sxd[1]))
      initial_states_backward.append(
          tf.contrib.rnn.LSTMStateTuple(states_sxd[2], states_sxd[3]))
    return initial_states_forward, initial_states_backward