vggish_smoke_test.py 3.59 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""A smoke test for VGGish.

This is a simple smoke test of a local install of VGGish and its associated
downloaded files. We create a synthetic sound, extract log mel spectrogram
features, run them through VGGish, post-process the embedding ouputs, and
check some simple statistics of the results, allowing for variations that
might occur due to platform/version differences in the libraries we use.

Usage:
- Download the VGGish checkpoint and PCA parameters into the same directory as
  the VGGish source code. If you keep them elsewhere, update the checkpoint_path
  and pca_params_path variables below.
- Run:
  $ python vggish_smoke_test.py
"""

from __future__ import print_function

import numpy as np
import tensorflow as tf

37
38
39
40
41
import vggish_input
import vggish_params
import vggish_postprocess
import vggish_slim

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
print('\nTesting your install of VGGish\n')

# Paths to downloaded VGGish files.
checkpoint_path = 'vggish_model.ckpt'
pca_params_path = 'vggish_pca_params.npz'

# Relative tolerance of errors in mean and standard deviation of embeddings.
rel_error = 0.1  # Up to 10%

# Generate a 1 kHz sine wave at 44.1 kHz (we use a high sampling rate
# to test resampling to 16 kHz during feature extraction).
num_secs = 3
freq = 1000
sr = 44100
t = np.linspace(0, num_secs, int(num_secs * sr))
x = np.sin(2 * np.pi * freq * t)

# Produce a batch of log mel spectrogram examples.
input_batch = vggish_input.waveform_to_examples(x, sr)
print('Log Mel Spectrogram example: ', input_batch[0])
np.testing.assert_equal(
    input_batch.shape,
    [num_secs, vggish_params.NUM_FRAMES, vggish_params.NUM_BANDS])

# Define VGGish, load the checkpoint, and run the batch through the model to
# produce embeddings.
with tf.Graph().as_default(), tf.Session() as sess:
  vggish_slim.define_vggish_slim()
  vggish_slim.load_vggish_slim_checkpoint(sess, checkpoint_path)

  features_tensor = sess.graph.get_tensor_by_name(
      vggish_params.INPUT_TENSOR_NAME)
  embedding_tensor = sess.graph.get_tensor_by_name(
      vggish_params.OUTPUT_TENSOR_NAME)
  [embedding_batch] = sess.run([embedding_tensor],
                               feed_dict={features_tensor: input_batch})
  print('VGGish embedding: ', embedding_batch[0])
  expected_embedding_mean = 0.131
  expected_embedding_std = 0.238
  np.testing.assert_allclose(
      [np.mean(embedding_batch), np.std(embedding_batch)],
      [expected_embedding_mean, expected_embedding_std],
      rtol=rel_error)

# Postprocess the results to produce whitened quantized embeddings.
pproc = vggish_postprocess.Postprocessor(pca_params_path)
postprocessed_batch = pproc.postprocess(embedding_batch)
print('Postprocessed VGGish embedding: ', postprocessed_batch[0])
expected_postprocessed_mean = 123.0
expected_postprocessed_std = 75.0
np.testing.assert_allclose(
    [np.mean(postprocessed_batch), np.std(postprocessed_batch)],
    [expected_postprocessed_mean, expected_postprocessed_std],
    rtol=rel_error)

print('\nLooks Good To Me!\n')