vggish_input.py 3.23 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Compute input examples for VGGish from audio waveform."""

import numpy as np
import resampy
from scipy.io import wavfile

22
23
24
import mel_features
import vggish_params

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

def waveform_to_examples(data, sample_rate):
  """Converts audio waveform into an array of examples for VGGish.

  Args:
    data: np.array of either one dimension (mono) or two dimensions
      (multi-channel, with the outer dimension representing channels).
      Each sample is generally expected to lie in the range [-1.0, +1.0],
      although this is not required.
    sample_rate: Sample rate of data.

  Returns:
    3-D np.array of shape [num_examples, num_frames, num_bands] which represents
    a sequence of examples, each of which contains a patch of log mel
    spectrogram, covering num_frames frames of audio and num_bands mel frequency
    bands, where the frame length is vggish_params.STFT_HOP_LENGTH_SECONDS.
  """
  # Convert to mono.
  if len(data.shape) > 1:
    data = np.mean(data, axis=1)
  # Resample to the rate assumed by VGGish.
  if sample_rate != vggish_params.SAMPLE_RATE:
    data = resampy.resample(data, sample_rate, vggish_params.SAMPLE_RATE)

  # Compute log mel spectrogram features.
  log_mel = mel_features.log_mel_spectrogram(
      data,
      audio_sample_rate=vggish_params.SAMPLE_RATE,
      log_offset=vggish_params.LOG_OFFSET,
      window_length_secs=vggish_params.STFT_WINDOW_LENGTH_SECONDS,
      hop_length_secs=vggish_params.STFT_HOP_LENGTH_SECONDS,
      num_mel_bins=vggish_params.NUM_MEL_BINS,
      lower_edge_hertz=vggish_params.MEL_MIN_HZ,
      upper_edge_hertz=vggish_params.MEL_MAX_HZ)

  # Frame features into examples.
  features_sample_rate = 1.0 / vggish_params.STFT_HOP_LENGTH_SECONDS
  example_window_length = int(round(
      vggish_params.EXAMPLE_WINDOW_SECONDS * features_sample_rate))
  example_hop_length = int(round(
      vggish_params.EXAMPLE_HOP_SECONDS * features_sample_rate))
  log_mel_examples = mel_features.frame(
      log_mel,
      window_length=example_window_length,
      hop_length=example_hop_length)
  return log_mel_examples


def wavfile_to_examples(wav_file):
  """Convenience wrapper around waveform_to_examples() for a common WAV format.

  Args:
    wav_file: String path to a file, or a file-like object. The file
    is assumed to contain WAV audio data with signed 16-bit PCM samples.

  Returns:
    See waveform_to_examples.
  """
  sr, wav_data = wavfile.read(wav_file)
  assert wav_data.dtype == np.int16, 'Bad sample type: %r' % wav_data.dtype
  samples = wav_data / 32768.0  # Convert to [-1.0, +1.0]
  return waveform_to_examples(samples, sr)