hooks_helper.py 4.42 KB
Newer Older
Yanhui Liang's avatar
Yanhui Liang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Hooks helper to return a list of TensorFlow hooks for training by name.

More hooks can be added to this set. To add a new hook, 1) add the new hook to
the registry in HOOKS, 2) add a corresponding function that parses out necessary
parameters.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Karmel Allison's avatar
Karmel Allison committed
27
import tensorflow as tf  # pylint: disable=g-bad-import-order
Yanhui Liang's avatar
Yanhui Liang committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

from official.utils.logging import hooks

_TENSORS_TO_LOG = dict((x, x) for x in ['learning_rate',
                                        'cross_entropy',
                                        'train_accuracy'])


def get_train_hooks(name_list, **kwargs):
  """Factory for getting a list of TensorFlow hooks for training by name.

  Args:
    name_list: a list of strings to name desired hook classes. Allowed:
      LoggingTensorHook, ProfilerHook, ExamplesPerSecondHook, which are defined
      as keys in HOOKS
Karmel Allison's avatar
Karmel Allison committed
43
    **kwargs: a dictionary of arguments to the hooks.
Yanhui Liang's avatar
Yanhui Liang committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

  Returns:
    list of instantiated hooks, ready to be used in a classifier.train call.

  Raises:
    ValueError: if an unrecognized name is passed.
  """

  if not name_list:
    return []

  train_hooks = []
  for name in name_list:
    hook_name = HOOKS.get(name.strip().lower())
    if hook_name is None:
      raise ValueError('Unrecognized training hook requested: {}'.format(name))
    else:
      train_hooks.append(hook_name(**kwargs))

  return train_hooks


66
def get_logging_tensor_hook(every_n_iter=100, tensors_to_log=None, **kwargs):  # pylint: disable=unused-argument
Yanhui Liang's avatar
Yanhui Liang committed
67
68
69
70
71
  """Function to get LoggingTensorHook.

  Args:
    every_n_iter: `int`, print the values of `tensors` once every N local
      steps taken on the current worker.
72
73
    tensors_to_log: List of tensor names or dictionary mapping labels to tensor
      names. If not set, log _TENSORS_TO_LOG by default.
Karmel Allison's avatar
Karmel Allison committed
74
    **kwargs: a dictionary of arguments to LoggingTensorHook.
Yanhui Liang's avatar
Yanhui Liang committed
75
76
77
78
79

  Returns:
    Returns a LoggingTensorHook with a standard set of tensors that will be
    printed to stdout.
  """
80
81
82
  if tensors_to_log is None:
    tensors_to_log = _TENSORS_TO_LOG

Yanhui Liang's avatar
Yanhui Liang committed
83
  return tf.train.LoggingTensorHook(
84
      tensors=tensors_to_log,
Yanhui Liang's avatar
Yanhui Liang committed
85
86
87
88
89
90
91
92
      every_n_iter=every_n_iter)


def get_profiler_hook(save_steps=1000, **kwargs):  # pylint: disable=unused-argument
  """Function to get ProfilerHook.

  Args:
    save_steps: `int`, print profile traces every N steps.
Karmel Allison's avatar
Karmel Allison committed
93
    **kwargs: a dictionary of arguments to ProfilerHook.
Yanhui Liang's avatar
Yanhui Liang committed
94
95
96
97
98
99
100
101
102
103

  Returns:
    Returns a ProfilerHook that writes out timelines that can be loaded into
    profiling tools like chrome://tracing.
  """
  return tf.train.ProfilerHook(save_steps=save_steps)


def get_examples_per_second_hook(every_n_steps=100,
                                 batch_size=128,
104
                                 warm_steps=5,
Yanhui Liang's avatar
Yanhui Liang committed
105
106
107
108
109
110
111
112
113
                                 **kwargs):  # pylint: disable=unused-argument
  """Function to get ExamplesPerSecondHook.

  Args:
    every_n_steps: `int`, print current and average examples per second every
      N steps.
    batch_size: `int`, total batch size used to calculate examples/second from
      global time.
    warm_steps: skip this number of steps before logging and running average.
Karmel Allison's avatar
Karmel Allison committed
114
    **kwargs: a dictionary of arguments to ExamplesPerSecondHook.
Yanhui Liang's avatar
Yanhui Liang committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

  Returns:
    Returns a ProfilerHook that writes out timelines that can be loaded into
    profiling tools like chrome://tracing.
  """
  return hooks.ExamplesPerSecondHook(every_n_steps=every_n_steps,
                                     batch_size=batch_size,
                                     warm_steps=warm_steps)


# A dictionary to map one hook name and its corresponding function
HOOKS = {
    'loggingtensorhook': get_logging_tensor_hook,
    'profilerhook': get_profiler_hook,
    'examplespersecondhook': get_examples_per_second_hook,
}