data_test.py 6.57 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test NCF data pipeline."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
22
import pickle
23
24
25
import time

import numpy as np
26
import pandas as pd
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import tensorflow as tf

from official.datasets import movielens
from official.recommendation import constants as rconst
from official.recommendation import data_preprocessing


DATASET = "ml-test"
NUM_USERS = 1000
NUM_ITEMS = 2000
NUM_PTS = 50000
BATCH_SIZE = 2048
NUM_NEG = 4


def mock_download(*args, **kwargs):
  return


class BaseTest(tf.test.TestCase):
  def setUp(self):
    self.temp_data_dir = self.get_temp_dir()
    ratings_folder = os.path.join(self.temp_data_dir, DATASET)
    tf.gfile.MakeDirs(ratings_folder)
    np.random.seed(0)
    raw_user_ids = np.arange(NUM_USERS * 3)
    np.random.shuffle(raw_user_ids)
    raw_user_ids = raw_user_ids[:NUM_USERS]

    raw_item_ids = np.arange(NUM_ITEMS * 3)
    np.random.shuffle(raw_item_ids)
    raw_item_ids = raw_item_ids[:NUM_ITEMS]

    users = np.random.choice(raw_user_ids, NUM_PTS)
    items = np.random.choice(raw_item_ids, NUM_PTS)
    scores = np.random.randint(low=0, high=5, size=NUM_PTS)
    times = np.random.randint(low=1000000000, high=1200000000, size=NUM_PTS)

    rating_file = os.path.join(ratings_folder, movielens.RATINGS_FILE)
    self.seen_pairs = set()
    self.holdout = {}
    with tf.gfile.Open(rating_file, "w") as f:
      f.write("user_id,item_id,rating,timestamp\n")
      for usr, itm, scr, ts in zip(users, items, scores, times):
        pair = (usr, itm)
        if pair in self.seen_pairs:
          continue
        self.seen_pairs.add(pair)
        if usr not in self.holdout or (ts, itm) > self.holdout[usr]:
          self.holdout[usr] = (ts, itm)

        f.write("{},{},{},{}\n".format(usr, itm, scr, ts))

    movielens.download = mock_download
    movielens.NUM_RATINGS[DATASET] = NUM_PTS

  def test_preprocessing(self):
    # For the most part the necessary checks are performed within
    # construct_cache()
    ncf_dataset = data_preprocessing.construct_cache(
87
88
89
90
91
92
93
94
95
        dataset=DATASET, data_dir=self.temp_data_dir, num_data_readers=2,
        match_mlperf=False)
    assert ncf_dataset.num_users == NUM_USERS
    assert ncf_dataset.num_items == NUM_ITEMS

    time.sleep(1)  # Ensure we create the next cache in a new directory.
    ncf_dataset = data_preprocessing.construct_cache(
        dataset=DATASET, data_dir=self.temp_data_dir, num_data_readers=2,
        match_mlperf=True)
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    assert ncf_dataset.num_users == NUM_USERS
    assert ncf_dataset.num_items == NUM_ITEMS

  def drain_dataset(self, dataset, g):
    # type: (tf.data.Dataset, tf.Graph) -> list
    with self.test_session(graph=g) as sess:
      with g.as_default():
        batch = dataset.make_one_shot_iterator().get_next()
      output = []
      while True:
        try:
          output.append(sess.run(batch))
        except tf.errors.OutOfRangeError:
          break
    return output

  def test_end_to_end(self):
    ncf_dataset = data_preprocessing.instantiate_pipeline(
        dataset=DATASET, data_dir=self.temp_data_dir,
        batch_size=BATCH_SIZE, eval_batch_size=BATCH_SIZE, num_data_readers=2,
        num_neg=NUM_NEG)

    g = tf.Graph()
    with g.as_default():
      input_fn, record_dir, batch_count = \
        data_preprocessing.make_train_input_fn(ncf_dataset)
      dataset = input_fn({"batch_size": BATCH_SIZE, "use_tpu": False})
    first_epoch = self.drain_dataset(dataset=dataset, g=g)
    user_inv_map = {v: k for k, v in ncf_dataset.user_map.items()}
    item_inv_map = {v: k for k, v in ncf_dataset.item_map.items()}

    train_examples = {
        True: set(),
        False: set(),
    }
    for features, labels in first_epoch:
      for u, i, l in zip(features[movielens.USER_COLUMN],
                         features[movielens.ITEM_COLUMN], labels):
        u_raw = user_inv_map[u]
        i_raw = item_inv_map[i]
        if ((u_raw, i_raw) in self.seen_pairs) != l:
          # The evaluation item is not considered during false negative
          # generation, so it will occasionally appear as a negative example
          # during training.
          assert not l
          assert i_raw == self.holdout[u_raw][1]
        train_examples[l].add((u_raw, i_raw))
    num_positives_seen = len(train_examples[True])

    # The numbers don't match exactly because the last batch spills over into
    # the next epoch
    assert ncf_dataset.num_train_positives - num_positives_seen < BATCH_SIZE

    # This check is more heuristic because negatives are sampled with
    # replacement. It only checks that negative generation is reasonably random.
    assert len(train_examples[False]) / NUM_NEG / num_positives_seen > 0.9

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
  def test_shard_randomness(self):
    users = [0, 0, 0, 0, 1, 1, 1, 1]
    items = [0, 2, 4, 6, 0, 2, 4, 6]
    times = [1, 2, 3, 4, 1, 2, 3, 4]
    df = pd.DataFrame({movielens.USER_COLUMN: users,
                       movielens.ITEM_COLUMN: items,
                       movielens.TIMESTAMP_COLUMN: times})
    cache_paths = rconst.Paths(data_dir=self.temp_data_dir)
    np.random.seed(1)
    data_preprocessing.generate_train_eval_data(df, approx_num_shards=2,
                                                num_items=10,
                                                cache_paths=cache_paths,
                                                match_mlperf=True)
    with tf.gfile.Open(cache_paths.eval_raw_file, "rb") as f:
      eval_data = pickle.load(f)
    eval_items_per_user = rconst.NUM_EVAL_NEGATIVES + 1
    self.assertAllClose(eval_data[0][movielens.USER_COLUMN],
                        [0] * eval_items_per_user + [1] * eval_items_per_user)

    # Each shard process should generate different random items.
    self.assertNotAllClose(
        eval_data[0][movielens.ITEM_COLUMN][:eval_items_per_user],
        eval_data[0][movielens.ITEM_COLUMN][eval_items_per_user:])

177
178
179
180

if __name__ == "__main__":
  tf.logging.set_verbosity(tf.logging.INFO)
  tf.test.main()