MaskingNoiseAutoencoderRunner.py 1.61 KB
Newer Older
1
2
3
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
Jiří Vahala's avatar
Jiří Vahala committed
4

5
import numpy as np
Jiří Vahala's avatar
Jiří Vahala committed
6
7
8
9
import sklearn.preprocessing as prep
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

10
from autoencoder_models.DenoisingAutoencoder import MaskingNoiseAutoencoder
Jiří Vahala's avatar
Jiří Vahala committed
11

12
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
Jiří Vahala's avatar
Jiří Vahala committed
13

14

Jiří Vahala's avatar
Jiří Vahala committed
15
16
17
18
19
20
def standard_scale(X_train, X_test):
    preprocessor = prep.StandardScaler().fit(X_train)
    X_train = preprocessor.transform(X_train)
    X_test = preprocessor.transform(X_test)
    return X_train, X_test

21

Jiří Vahala's avatar
Jiří Vahala committed
22
23
24
25
26
def get_random_block_from_data(data, batch_size):
    start_index = np.random.randint(0, len(data) - batch_size)
    return data[start_index:(start_index + batch_size)]


27
X_train, X_test = standard_scale(mnist.train.images, mnist.test.images)
Jiří Vahala's avatar
Jiří Vahala committed
28
29
30
31
32
33

n_samples = int(mnist.train.num_examples)
training_epochs = 100
batch_size = 128
display_step = 1

34
autoencoder = MaskingNoiseAutoencoder(
35
36
37
38
39
    n_input=784,
    n_hidden=200,
    transfer_function=tf.nn.softplus,
    optimizer=tf.train.AdamOptimizer(learning_rate=0.001),
    dropout_probability=0.95)
Jiří Vahala's avatar
Jiří Vahala committed
40
41
42
43
44
45
46
47
48
49
50
51

for epoch in range(training_epochs):
    avg_cost = 0.
    total_batch = int(n_samples / batch_size)
    for i in range(total_batch):
        batch_xs = get_random_block_from_data(X_train, batch_size)

        cost = autoencoder.partial_fit(batch_xs)

        avg_cost += cost / n_samples * batch_size

    if epoch % display_step == 0:
Alan Yee's avatar
Alan Yee committed
52
53
        print("Epoch:", '%d,' % (epoch + 1),
              "Cost:", "{:.9f}".format(avg_cost))
Jiří Vahala's avatar
Jiří Vahala committed
54

55
print("Total cost: " + str(autoencoder.calc_total_cost(X_test)))