trainer_test.py 7.54 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Tests for object_detection.trainer."""

import tensorflow as tf

from google.protobuf import text_format

from object_detection import trainer
from object_detection.core import losses
from object_detection.core import model
from object_detection.core import standard_fields as fields
from object_detection.protos import train_pb2


NUMBER_OF_CLASSES = 2


def get_input_function():
  """A function to get test inputs. Returns an image with one box."""
  image = tf.random_uniform([32, 32, 3], dtype=tf.float32)
35
  key = tf.constant('image_000000')
36
37
38
39
40
41
42
  class_label = tf.random_uniform(
      [1], minval=0, maxval=NUMBER_OF_CLASSES, dtype=tf.int32)
  box_label = tf.random_uniform(
      [1, 4], minval=0.4, maxval=0.6, dtype=tf.float32)

  return {
      fields.InputDataFields.image: image,
43
      fields.InputDataFields.key: key,
44
45
46
47
48
49
50
51
52
53
      fields.InputDataFields.groundtruth_classes: class_label,
      fields.InputDataFields.groundtruth_boxes: box_label
  }


class FakeDetectionModel(model.DetectionModel):
  """A simple (and poor) DetectionModel for use in test."""

  def __init__(self):
    super(FakeDetectionModel, self).__init__(num_classes=NUMBER_OF_CLASSES)
54
55
    self._classification_loss = losses.WeightedSigmoidClassificationLoss()
    self._localization_loss = losses.WeightedSmoothL1LocalizationLoss()
56
57
58
59
60
61
62
63
64
65

  def preprocess(self, inputs):
    """Input preprocessing, resizes images to 28x28.

    Args:
      inputs: a [batch, height_in, width_in, channels] float32 tensor
        representing a batch of images with values between 0 and 255.0.

    Returns:
      preprocessed_inputs: a [batch, 28, 28, channels] float32 tensor.
66
67
68
69
      true_image_shapes: int32 tensor of shape [batch, 3] where each row is
        of the form [height, width, channels] indicating the shapes
        of true images in the resized images, as resized images can be padded
        with zeros.
70
    """
71
72
73
    true_image_shapes = [inputs.shape[:-1].as_list()
                         for _ in range(inputs.shape[-1])]
    return tf.image.resize_images(inputs, [28, 28]), true_image_shapes
74

75
  def predict(self, preprocessed_inputs, true_image_shapes):
76
77
78
79
    """Prediction tensors from inputs tensor.

    Args:
      preprocessed_inputs: a [batch, 28, 28, channels] float32 tensor.
80
81
82
83
      true_image_shapes: int32 tensor of shape [batch, 3] where each row is
        of the form [height, width, channels] indicating the shapes
        of true images in the resized images, as resized images can be padded
        with zeros.
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

    Returns:
      prediction_dict: a dictionary holding prediction tensors to be
        passed to the Loss or Postprocess functions.
    """
    flattened_inputs = tf.contrib.layers.flatten(preprocessed_inputs)
    class_prediction = tf.contrib.layers.fully_connected(
        flattened_inputs, self._num_classes)
    box_prediction = tf.contrib.layers.fully_connected(flattened_inputs, 4)

    return {
        'class_predictions_with_background': tf.reshape(
            class_prediction, [-1, 1, self._num_classes]),
        'box_encodings': tf.reshape(box_prediction, [-1, 1, 4])
    }

100
  def postprocess(self, prediction_dict, true_image_shapes, **params):
101
102
103
104
    """Convert predicted output tensors to final detections. Unused.

    Args:
      prediction_dict: a dictionary holding prediction tensors.
105
106
107
108
      true_image_shapes: int32 tensor of shape [batch, 3] where each row is
        of the form [height, width, channels] indicating the shapes
        of true images in the resized images, as resized images can be padded
        with zeros.
109
110
111
112
113
114
115
116
117
118
119
120
121
      **params: Additional keyword arguments for specific implementations of
        DetectionModel.

    Returns:
      detections: a dictionary with empty fields.
    """
    return {
        'detection_boxes': None,
        'detection_scores': None,
        'detection_classes': None,
        'num_detections': None
    }

122
  def loss(self, prediction_dict, true_image_shapes):
123
124
125
126
127
128
129
    """Compute scalar loss tensors with respect to provided groundtruth.

    Calling this function requires that groundtruth tensors have been
    provided via the provide_groundtruth function.

    Args:
      prediction_dict: a dictionary holding predicted tensors
130
131
132
133
      true_image_shapes: int32 tensor of shape [batch, 3] where each row is
        of the form [height, width, channels] indicating the shapes
        of true images in the resized images, as resized images can be padded
        with zeros.
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

    Returns:
      a dictionary mapping strings (loss names) to scalar tensors representing
        loss values.
    """
    batch_reg_targets = tf.stack(
        self.groundtruth_lists(fields.BoxListFields.boxes))
    batch_cls_targets = tf.stack(
        self.groundtruth_lists(fields.BoxListFields.classes))
    weights = tf.constant(
        1.0, dtype=tf.float32,
        shape=[len(self.groundtruth_lists(fields.BoxListFields.boxes)), 1])

    location_losses = self._localization_loss(
        prediction_dict['box_encodings'], batch_reg_targets,
        weights=weights)
    cls_losses = self._classification_loss(
        prediction_dict['class_predictions_with_background'], batch_cls_targets,
        weights=weights)

    loss_dict = {
        'localization_loss': tf.reduce_sum(location_losses),
        'classification_loss': tf.reduce_sum(cls_losses),
    }
    return loss_dict

160
161
  def restore_map(self, from_detection_checkpoint=True):
    """Returns a map of variables to load from a foreign checkpoint.
162
163
164
165
166
167
168

    Args:
      from_detection_checkpoint: whether to restore from a full detection
        checkpoint (with compatible variable names) or to restore from a
        classification checkpoint for initialization prior to training.

    Returns:
169
      A dict mapping variable names to variables.
170
    """
171
    return {var.op.name: var for var in tf.global_variables()}
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220


class TrainerTest(tf.test.TestCase):

  def test_configure_trainer_and_train_two_steps(self):
    train_config_text_proto = """
    optimizer {
      adam_optimizer {
        learning_rate {
          constant_learning_rate {
            learning_rate: 0.01
          }
        }
      }
    }
    data_augmentation_options {
      random_adjust_brightness {
        max_delta: 0.2
      }
    }
    data_augmentation_options {
      random_adjust_contrast {
        min_delta: 0.7
        max_delta: 1.1
      }
    }
    num_steps: 2
    """
    train_config = train_pb2.TrainConfig()
    text_format.Merge(train_config_text_proto, train_config)

    train_dir = self.get_temp_dir()

    trainer.train(create_tensor_dict_fn=get_input_function,
                  create_model_fn=FakeDetectionModel,
                  train_config=train_config,
                  master='',
                  task=0,
                  num_clones=1,
                  worker_replicas=1,
                  clone_on_cpu=True,
                  ps_tasks=0,
                  worker_job_name='worker',
                  is_chief=True,
                  train_dir=train_dir)


if __name__ == '__main__':
  tf.test.main()