inputs_test.py 8.54 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.tflearn.inputs."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

import tensorflow as tf

from object_detection import inputs
from object_detection.core import standard_fields as fields
from object_detection.utils import config_util

FLAGS = tf.flags.FLAGS


def _get_configs_for_model(model_name):
  """Returns configurations for model."""
  # TODO: Make sure these tests work fine outside google3.
  fname = os.path.join(
      FLAGS.test_srcdir,
      ('google3/third_party/tensorflow_models/'
       'object_detection/samples/configs/' + model_name + '.config'))
  label_map_path = os.path.join(FLAGS.test_srcdir,
                                ('google3/third_party/tensorflow_models/'
                                 'object_detection/data/pet_label_map.pbtxt'))
  data_path = os.path.join(FLAGS.test_srcdir,
                           ('google3/third_party/tensorflow_models/'
                            'object_detection/test_data/pets_examples.record'))
  configs = config_util.get_configs_from_pipeline_file(fname)
  return config_util.merge_external_params_with_configs(
      configs,
      train_input_path=data_path,
      eval_input_path=data_path,
      label_map_path=label_map_path)


class InputsTest(tf.test.TestCase):

  def _assert_training_inputs(self, features, labels, num_classes, batch_size):
    self.assertEqual(batch_size, len(features['images']))
    self.assertEqual(batch_size, len(features['key']))
    self.assertEqual(batch_size, len(labels['locations_list']))
    self.assertEqual(batch_size, len(labels['classes_list']))
    for i in range(batch_size):
      image = features['images'][i]
      key = features['key'][i]
      locations_list = labels['locations_list'][i]
      classes_list = labels['classes_list'][i]
      weights_list = labels[fields.InputDataFields.groundtruth_weights][i]
      self.assertEqual([1, None, None, 3], image.shape.as_list())
      self.assertEqual(tf.float32, image.dtype)
      self.assertEqual(tf.string, key.dtype)
      self.assertEqual([None, 4], locations_list.shape.as_list())
      self.assertEqual(tf.float32, locations_list.dtype)
      self.assertEqual([None, num_classes], classes_list.shape.as_list())
      self.assertEqual(tf.float32, classes_list.dtype)
      self.assertEqual([None], weights_list.shape.as_list())
      self.assertEqual(tf.float32, weights_list.dtype)

  def _assert_eval_inputs(self, features, labels, num_classes):
    self.assertEqual(1, len(labels['locations_list']))
    self.assertEqual(1, len(labels['classes_list']))
    self.assertEqual(1, len(labels['image_id_list']))
    self.assertEqual(1, len(labels['area_list']))
    self.assertEqual(1, len(labels['is_crowd_list']))
    self.assertEqual(1, len(labels['difficult_list']))
    image = features['images']
    key = features['key']
    locations_list = labels['locations_list'][0]
    classes_list = labels['classes_list'][0]
    image_id_list = labels['image_id_list'][0]
    area_list = labels['area_list'][0]
    is_crowd_list = labels['is_crowd_list'][0]
    difficult_list = labels['difficult_list'][0]
    self.assertEqual([1, None, None, 3], image.shape.as_list())
    self.assertEqual(tf.float32, image.dtype)
    self.assertEqual(tf.string, key.dtype)
    self.assertEqual([None, 4], locations_list.shape.as_list())
    self.assertEqual(tf.float32, locations_list.dtype)
    self.assertEqual([None, num_classes], classes_list.shape.as_list())
    self.assertEqual(tf.float32, classes_list.dtype)
    self.assertEqual(tf.string, image_id_list.dtype)
    self.assertEqual(tf.float32, area_list.dtype)
    self.assertEqual(tf.bool, is_crowd_list.dtype)
    self.assertEqual(tf.int64, difficult_list.dtype)

  def test_faster_rcnn_resnet50_train_input(self):
    """Tests the training input function for FasterRcnnResnet50."""
    configs = _get_configs_for_model('faster_rcnn_resnet50_pets')
    classes = 37
    batch_size = configs['train_config'].batch_size
    train_input_fn = inputs.create_train_input_fn(
        classes, configs['train_config'], configs['train_input_config'])
    features, labels = train_input_fn()
    self._assert_training_inputs(features, labels, classes, batch_size)

  def test_faster_rcnn_resnet50_eval_input(self):
    """Tests the eval input function for FasterRcnnResnet50."""
    configs = _get_configs_for_model('faster_rcnn_resnet50_pets')
    classes = 37
    eval_input_fn = inputs.create_eval_input_fn(classes, configs['eval_config'],
                                                configs['eval_input_config'])
    features, labels = eval_input_fn()
    self._assert_eval_inputs(features, labels, classes)

  def test_ssd_inceptionV2_train_input(self):
    """Tests the training input function for SSDInceptionV2."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    classes = 37
    batch_size = configs['train_config'].batch_size
    train_input_fn = inputs.create_train_input_fn(
        classes, configs['train_config'], configs['train_input_config'])
    features, labels = train_input_fn()
    self._assert_training_inputs(features, labels, classes, batch_size)

  def test_ssd_inceptionV2_eval_input(self):
    """Tests the eval input function for SSDInceptionV2."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    classes = 37
    eval_input_fn = inputs.create_eval_input_fn(classes, configs['eval_config'],
                                                configs['eval_input_config'])
    features, labels = eval_input_fn()
    self._assert_eval_inputs(features, labels, classes)

  def test_predict_input(self):
    """Tests the predict input function."""
    predict_input_fn = inputs.create_predict_input_fn()
    serving_input_receiver = predict_input_fn()

    image = serving_input_receiver.features['images']
    receiver_tensors = serving_input_receiver.receiver_tensors[
        'serialized_example']
    self.assertEqual([1, None, None, 3], image.shape.as_list())
    self.assertEqual(tf.float32, image.dtype)
    self.assertEqual(tf.string, receiver_tensors.dtype)

  def test_error_with_bad_train_config(self):
    """Tests that a TypeError is raised with improper train config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    classes = 37
    train_input_fn = inputs.create_train_input_fn(
        num_classes=classes,
        train_config=configs['eval_config'],  # Expecting `TrainConfig`.
        train_input_config=configs['train_input_config'])
    with self.assertRaises(TypeError):
      train_input_fn()

  def test_error_with_bad_train_input_config(self):
    """Tests that a TypeError is raised with improper train input config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    classes = 37
    train_input_fn = inputs.create_train_input_fn(
        num_classes=classes,
        train_config=configs['train_config'],
        train_input_config=configs['model'])  # Expecting `InputReader`.
    with self.assertRaises(TypeError):
      train_input_fn()

  def test_error_with_bad_eval_config(self):
    """Tests that a TypeError is raised with improper eval config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    classes = 37
    eval_input_fn = inputs.create_eval_input_fn(
        num_classes=classes,
        eval_config=configs['train_config'],  # Expecting `EvalConfig`.
        eval_input_config=configs['eval_input_config'])
    with self.assertRaises(TypeError):
      eval_input_fn()

  def test_error_with_bad_eval_input_config(self):
    """Tests that a TypeError is raised with improper eval input config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    classes = 37
    eval_input_fn = inputs.create_eval_input_fn(
        num_classes=classes,
        eval_config=configs['eval_config'],
        eval_input_config=configs['model'])  # Expecting `InputReader`.
    with self.assertRaises(TypeError):
      eval_input_fn()


if __name__ == '__main__':
  tf.test.main()