detection.py 8.26 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Detection input and model functions for serving/inference."""

from typing import Mapping, Text
18
19

from absl import logging
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import tensorflow as tf

from official.vision import configs
from official.vision.modeling import factory
from official.vision.ops import anchor
from official.vision.ops import box_ops
from official.vision.ops import preprocess_ops
from official.vision.serving import export_base


MEAN_RGB = (0.485 * 255, 0.456 * 255, 0.406 * 255)
STDDEV_RGB = (0.229 * 255, 0.224 * 255, 0.225 * 255)


class DetectionModule(export_base.ExportModule):
  """Detection Module."""

  def _build_model(self):

    if self._batch_size is None:
40
41
42
43
44
45
      # Only batched NMS is supported with dynamic batch size.
      self.params.task.model.detection_generator.nms_version = 'batched'
      logging.info(
          'nms_version is set to `batched` because only batched NMS is '
          'supported with dynamic batch size.')

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    input_specs = tf.keras.layers.InputSpec(shape=[self._batch_size] +
                                            self._input_image_size + [3])

    if isinstance(self.params.task.model, configs.maskrcnn.MaskRCNN):
      model = factory.build_maskrcnn(
          input_specs=input_specs, model_config=self.params.task.model)
    elif isinstance(self.params.task.model, configs.retinanet.RetinaNet):
      model = factory.build_retinanet(
          input_specs=input_specs, model_config=self.params.task.model)
    else:
      raise ValueError('Detection module not implemented for {} model.'.format(
          type(self.params.task.model)))

    return model

  def _build_anchor_boxes(self):
    """Builds and returns anchor boxes."""
    model_params = self.params.task.model
    input_anchor = anchor.build_anchor_generator(
        min_level=model_params.min_level,
        max_level=model_params.max_level,
        num_scales=model_params.anchor.num_scales,
        aspect_ratios=model_params.anchor.aspect_ratios,
        anchor_size=model_params.anchor.anchor_size)
    return input_anchor(
        image_size=(self._input_image_size[0], self._input_image_size[1]))

  def _build_inputs(self, image):
    """Builds detection model inputs for serving."""
    model_params = self.params.task.model
    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image,
                                           offset=MEAN_RGB,
                                           scale=STDDEV_RGB)

    image, image_info = preprocess_ops.resize_and_crop_image(
        image,
        self._input_image_size,
        padded_size=preprocess_ops.compute_padded_size(
            self._input_image_size, 2**model_params.max_level),
        aug_scale_min=1.0,
        aug_scale_max=1.0)
    anchor_boxes = self._build_anchor_boxes()

    return image, anchor_boxes, image_info

  def preprocess(self, images: tf.Tensor) -> (
      tf.Tensor, Mapping[Text, tf.Tensor], tf.Tensor):
    """Preprocess inputs to be suitable for the model.

    Args:
      images: The images tensor.
    Returns:
      images: The images tensor cast to float.
      anchor_boxes: Dict mapping anchor levels to anchor boxes.
      image_info: Tensor containing the details of the image resizing.

    """
    model_params = self.params.task.model
    with tf.device('cpu:0'):
      images = tf.cast(images, dtype=tf.float32)

      # Tensor Specs for map_fn outputs (images, anchor_boxes, and image_info).
      images_spec = tf.TensorSpec(shape=self._input_image_size + [3],
                                  dtype=tf.float32)

      num_anchors = model_params.anchor.num_scales * len(
          model_params.anchor.aspect_ratios) * 4
      anchor_shapes = []
      for level in range(model_params.min_level, model_params.max_level + 1):
        anchor_level_spec = tf.TensorSpec(
            shape=[
                self._input_image_size[0] // 2**level,
                self._input_image_size[1] // 2**level, num_anchors
            ],
            dtype=tf.float32)
        anchor_shapes.append((str(level), anchor_level_spec))

      image_info_spec = tf.TensorSpec(shape=[4, 2], dtype=tf.float32)

      images, anchor_boxes, image_info = tf.nest.map_structure(
          tf.identity,
          tf.map_fn(
              self._build_inputs,
              elems=images,
              fn_output_signature=(images_spec, dict(anchor_shapes),
                                   image_info_spec),
              parallel_iterations=32))

      return images, anchor_boxes, image_info

  def serve(self, images: tf.Tensor):
    """Cast image to float and run inference.

    Args:
      images: uint8 Tensor of shape [batch_size, None, None, 3]
    Returns:
      Tensor holding detection output logits.
    """

    # Skip image preprocessing when input_type is tflite so it is compatible
    # with TFLite quantization.
    if self._input_type != 'tflite':
      images, anchor_boxes, image_info = self.preprocess(images)
    else:
      with tf.device('cpu:0'):
        anchor_boxes = self._build_anchor_boxes()
        # image_info is a 3D tensor of shape [batch_size, 4, 2]. It is in the
        # format of [[original_height, original_width],
        # [desired_height, desired_width], [y_scale, x_scale],
        # [y_offset, x_offset]]. When input_type is tflite, input image is
        # supposed to be preprocessed already.
        image_info = tf.convert_to_tensor([[
            self._input_image_size, self._input_image_size, [1.0, 1.0], [0, 0]
        ]],
                                          dtype=tf.float32)
    input_image_shape = image_info[:, 1, :]

    # To overcome keras.Model extra limitation to save a model with layers that
    # have multiple inputs, we use `model.call` here to trigger the forward
    # path. Note that, this disables some keras magics happens in `__call__`.
    detections = self.model.call(
        images=images,
        image_shape=input_image_shape,
        anchor_boxes=anchor_boxes,
        training=False)

    if self.params.task.model.detection_generator.apply_nms:
      # For RetinaNet model, apply export_config.
      # TODO(huizhongc): Add export_config to fasterrcnn and maskrcnn as needed.
      if isinstance(self.params.task.model, configs.retinanet.RetinaNet):
        export_config = self.params.task.export_config
        # Normalize detection box coordinates to [0, 1].
        if export_config.output_normalized_coordinates:
          detection_boxes = (
              detections['detection_boxes'] /
              tf.tile(image_info[:, 2:3, :], [1, 1, 2]))
          detections['detection_boxes'] = box_ops.normalize_boxes(
              detection_boxes, image_info[:, 0:1, :])

        # Cast num_detections and detection_classes to float. This allows the
        # model inference to work on chain (go/chain) as chain requires floating
        # point outputs.
        if export_config.cast_num_detections_to_float:
          detections['num_detections'] = tf.cast(
              detections['num_detections'], dtype=tf.float32)
        if export_config.cast_detection_classes_to_float:
          detections['detection_classes'] = tf.cast(
              detections['detection_classes'], dtype=tf.float32)

      final_outputs = {
          'detection_boxes': detections['detection_boxes'],
          'detection_scores': detections['detection_scores'],
          'detection_classes': detections['detection_classes'],
          'num_detections': detections['num_detections']
      }
    else:
      final_outputs = {
          'decoded_boxes': detections['decoded_boxes'],
          'decoded_box_scores': detections['decoded_box_scores']
      }

    if 'detection_masks' in detections.keys():
      final_outputs['detection_masks'] = detections['detection_masks']

    final_outputs.update({'image_info': image_info})
    return final_outputs